Wasserstein perturbations of Markovian transition semigroups
Fuhrmann S, Kupper M, Nendel M (2023)
Annales de l'Institut Henri Poincaré (B): Probability and Statistics 59(2): 904-932.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fuhrmann, Sven;
Kupper, Michael;
Nendel, MaxUniBi
Einrichtung
Abstract / Bemerkung
In this paper, we deal with a class of time-homogeneous continuous-time Markov processes with transition probabilities bearing a nonparametric uncertainty. The uncertainty is modelled by considering perturbations of the transition probabilities within a proximity in Wasserstein distance. As a limit over progressively finer time periods, on which the level of uncertainty scales proportionally, we obtain a convex semigroup satisfying a nonlinear PDE in a viscosity sense. A remarkable observation is that, in standard situations, the nonlinear transition operators arising from nonparametric uncertainty coincide with the ones related to parametric drift uncertainty. On the level of the generator, the uncertainty is reflected as an additive perturbation in terms of a convex functional of first order derivatives. We additionally provide sensitivity bounds for the convex semigroup relative to the reference model. The results are illustrated with Wasserstein perturbations of Levy processes, infinite-dimensional Ornstein-Uhlenbeck processes, geometric Brownian motions, and Koopman semigroups.
Stichworte
Markov process;
Wasserstein distance;
Nonparametric uncertainty;
Convex;
semigroup;
Nonlinear PDE;
Viscosity solution
Erscheinungsjahr
2023
Zeitschriftentitel
Annales de l'Institut Henri Poincaré (B): Probability and Statistics
Band
59
Ausgabe
2
Seite(n)
904-932
ISSN
0246-0203
Page URI
https://pub.uni-bielefeld.de/record/2979259
Zitieren
Fuhrmann S, Kupper M, Nendel M. Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincaré (B): Probability and Statistics . 2023;59(2):904-932.
Fuhrmann, S., Kupper, M., & Nendel, M. (2023). Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincaré (B): Probability and Statistics , 59(2), 904-932. https://doi.org/10.1214/22-AIHP1270
Fuhrmann, Sven, Kupper, Michael, and Nendel, Max. 2023. “Wasserstein perturbations of Markovian transition semigroups”. Annales de l'Institut Henri Poincaré (B): Probability and Statistics 59 (2): 904-932.
Fuhrmann, S., Kupper, M., and Nendel, M. (2023). Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincaré (B): Probability and Statistics 59, 904-932.
Fuhrmann, S., Kupper, M., & Nendel, M., 2023. Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincaré (B): Probability and Statistics , 59(2), p 904-932.
S. Fuhrmann, M. Kupper, and M. Nendel, “Wasserstein perturbations of Markovian transition semigroups”, Annales de l'Institut Henri Poincaré (B): Probability and Statistics , vol. 59, 2023, pp. 904-932.
Fuhrmann, S., Kupper, M., Nendel, M.: Wasserstein perturbations of Markovian transition semigroups. Annales de l'Institut Henri Poincaré (B): Probability and Statistics . 59, 904-932 (2023).
Fuhrmann, Sven, Kupper, Michael, and Nendel, Max. “Wasserstein perturbations of Markovian transition semigroups”. Annales de l'Institut Henri Poincaré (B): Probability and Statistics 59.2 (2023): 904-932.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in