Multi solitary waves to stochastic nonlinear Schrodinger equations

Röckner M, Su Y, Zhang D (2023)
Probability Theory and Related Fields 186: 64.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 883.47 KB
Autor*in
Röckner, MichaelUniBi; Su, Yiming; Zhang, Deng
Abstract / Bemerkung
In this paper, we present a pathwise construction of multi-soliton solutions for focusing stochastic nonlinear Schrodinger equations with linear multiplicative noise, in both the L-2-critical and subcritical cases. The constructed multi-solitons behave asymptotically as a sum of K solitary waves, where K is any given finite number. Moreover, the con-vergence rate of the remainders can be of either exponential or polynomial type, which reflects the effects of the noise in the system on the asymptotical behavior of the solutions. The major difficulty in our construction of stochastic multi-solitons is the absence of pseudo-conformal invariance. Unlike in the deterministic case (Merle in Commun Math Phys 129:223-240, 1990; Rockner et al. in Multi-bubble Bourgain-Wang solu-tions to nonlinear Schrodinger equation, arXiv: 2110.04107, 2021), the existence of stochastic multi-solitons cannot be obtained from that of stochastic multi-bubble blow-up solutions in Rockner et al. (Multi-bubble Bourgain-Wang solutions to nonlinear Schrodinger equation, arXiv:2110.04107, 2021), Su and Zhang (On the multi-bubble blow-up solutions to rough nonlinear Schrodinger equations, arXiv:2012.14037v1, 2020). Our proof is mainly based on the rescaling approach in Herr et al. (Commun Math Phys 368:843-884, 2019), relying on two types of Doss-Sussman transforms, and on the modulation method in Cote and Friederich (Commun Partial Differ Equ 46:2325-2385, 2021), Martel and Merle (Ann Inst H Poincare Anal Non Lineaire 23:849-864, 2006), in which the crucial ingredient is the monotonicity of the Lyapunov type functional constructed by Martel et al. (Duke Math J 133:405-466, 2006). In our stochastic case, this functional depends on the Brownian paths in the noise.
Stichworte
Multi-solitons; Rough path; Stochastic nonlinear Schrodinger equations
Erscheinungsjahr
2023
Zeitschriftentitel
Probability Theory and Related Fields
Band
186
Seite(n)
64
ISSN
0178-8051
eISSN
1432-2064
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2979256

Zitieren

Röckner M, Su Y, Zhang D. Multi solitary waves to stochastic nonlinear Schrodinger equations. Probability Theory and Related Fields. 2023;186:64.
Röckner, M., Su, Y., & Zhang, D. (2023). Multi solitary waves to stochastic nonlinear Schrodinger equations. Probability Theory and Related Fields, 186, 64. https://doi.org/10.1007/s00440-023-01201-z
Röckner, Michael, Su, Yiming, and Zhang, Deng. 2023. “Multi solitary waves to stochastic nonlinear Schrodinger equations”. Probability Theory and Related Fields 186: 64.
Röckner, M., Su, Y., and Zhang, D. (2023). Multi solitary waves to stochastic nonlinear Schrodinger equations. Probability Theory and Related Fields 186, 64.
Röckner, M., Su, Y., & Zhang, D., 2023. Multi solitary waves to stochastic nonlinear Schrodinger equations. Probability Theory and Related Fields, 186, p 64.
M. Röckner, Y. Su, and D. Zhang, “Multi solitary waves to stochastic nonlinear Schrodinger equations”, Probability Theory and Related Fields, vol. 186, 2023, pp. 64.
Röckner, M., Su, Y., Zhang, D.: Multi solitary waves to stochastic nonlinear Schrodinger equations. Probability Theory and Related Fields. 186, 64 (2023).
Röckner, Michael, Su, Yiming, and Zhang, Deng. “Multi solitary waves to stochastic nonlinear Schrodinger equations”. Probability Theory and Related Fields 186 (2023): 64.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-07-01T12:13:17Z
MD5 Prüfsumme
7aa3aa8d05625f5f40e71de6f2af3059


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar