Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise
Hofmanová M, Zhu R, Zhu X (2023)
Archive for Rational Mechanics and Analysis 247(3): 46.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hofmanová, MartinaUniBi;
Zhu, RongchanUniBi;
Zhu, Xiangchan
Einrichtung
Abstract / Bemerkung
We establish that global-in-time existence and non-uniqueness of probabilistically strong solutions to the three dimensional Navier-Stokes system driven by space-time white noise. In this setting, solutions are expected to have space regularity of at most -1/2 - ? for any ? > 0. Consequently, the convective term is ill-defined analytically and probabilistic renormalization is required. Up until now, only local well-posedness has been known. With the help of paracontrolled calculus we decompose the system in a way which makes it amenable to convex integration. By a careful analysis of the regularity of each term, we develop an iterative procedure which yields global non-unique probabilistically strong paracontrolled solutions. Our result applies to any divergence free initial condition in L-2 ? B-8,8(-1+?) (,) ? > 0, and also implies non-uniqueness in law.
Erscheinungsjahr
2023
Zeitschriftentitel
Archive for Rational Mechanics and Analysis
Band
247
Ausgabe
3
Art.-Nr.
46
ISSN
0003-9527
eISSN
1432-0673
Page URI
https://pub.uni-bielefeld.de/record/2979254
Zitieren
Hofmanová M, Zhu R, Zhu X. Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise. Archive for Rational Mechanics and Analysis . 2023;247(3): 46.
Hofmanová, M., Zhu, R., & Zhu, X. (2023). Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise. Archive for Rational Mechanics and Analysis , 247(3), 46. https://doi.org/10.1007/s00205-023-01872-x
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. 2023. “Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise”. Archive for Rational Mechanics and Analysis 247 (3): 46.
Hofmanová, M., Zhu, R., and Zhu, X. (2023). Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise. Archive for Rational Mechanics and Analysis 247:46.
Hofmanová, M., Zhu, R., & Zhu, X., 2023. Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise. Archive for Rational Mechanics and Analysis , 247(3): 46.
M. Hofmanová, R. Zhu, and X. Zhu, “Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise”, Archive for Rational Mechanics and Analysis , vol. 247, 2023, : 46.
Hofmanová, M., Zhu, R., Zhu, X.: Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise. Archive for Rational Mechanics and Analysis . 247, : 46 (2023).
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. “Global Existence and Non-Uniqueness for 3D Navier-Stokes Equations with Space-Time White Noise”. Archive for Rational Mechanics and Analysis 247.3 (2023): 46.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in