Grading of Triangulations Generated by Bisection
Diening L, Storn J, Tscherpel T (2023)
arXiv:2305.05742.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
For triangulations generated by the adaptive bisection algorithm by Maubach
and Traxler we prove existence of a regularized mesh function with grading two.
This sharpens previous results in two dimensions for the newest vertex
bisection and generalizes them to arbitrary dimensions. In combination with
Diening et al. (2021) this yields $H^1$-stability of the $L^2$-projection onto
Lagrange finite element spaces for all polynomial degrees and dimensions
smaller than seven.
Erscheinungsjahr
2023
Zeitschriftentitel
arXiv:2305.05742
Page URI
https://pub.uni-bielefeld.de/record/2979131
Zitieren
Diening L, Storn J, Tscherpel T. Grading of Triangulations Generated by Bisection. arXiv:2305.05742. 2023.
Diening, L., Storn, J., & Tscherpel, T. (2023). Grading of Triangulations Generated by Bisection. arXiv:2305.05742
Diening, Lars, Storn, Johannes, and Tscherpel, Tabea. 2023. “Grading of Triangulations Generated by Bisection”. arXiv:2305.05742.
Diening, L., Storn, J., and Tscherpel, T. (2023). Grading of Triangulations Generated by Bisection. arXiv:2305.05742.
Diening, L., Storn, J., & Tscherpel, T., 2023. Grading of Triangulations Generated by Bisection. arXiv:2305.05742.
L. Diening, J. Storn, and T. Tscherpel, “Grading of Triangulations Generated by Bisection”, arXiv:2305.05742, 2023.
Diening, L., Storn, J., Tscherpel, T.: Grading of Triangulations Generated by Bisection. arXiv:2305.05742. (2023).
Diening, Lars, Storn, Johannes, and Tscherpel, Tabea. “Grading of Triangulations Generated by Bisection”. arXiv:2305.05742 (2023).