Grading of Triangulations Generated by Bisection

Diening L, Storn J, Tscherpel T (2023)
arXiv:2305.05742.

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
For triangulations generated by the adaptive bisection algorithm by Maubach and Traxler we prove existence of a regularized mesh function with grading two. This sharpens previous results in two dimensions for the newest vertex bisection and generalizes them to arbitrary dimensions. In combination with Diening et al. (2021) this yields $H^1$-stability of the $L^2$-projection onto Lagrange finite element spaces for all polynomial degrees and dimensions smaller than seven.
Erscheinungsjahr
2023
Zeitschriftentitel
arXiv:2305.05742
Page URI
https://pub.uni-bielefeld.de/record/2979131

Zitieren

Diening L, Storn J, Tscherpel T. Grading of Triangulations Generated by Bisection. arXiv:2305.05742. 2023.
Diening, L., Storn, J., & Tscherpel, T. (2023). Grading of Triangulations Generated by Bisection. arXiv:2305.05742
Diening, Lars, Storn, Johannes, and Tscherpel, Tabea. 2023. “Grading of Triangulations Generated by Bisection”. arXiv:2305.05742.
Diening, L., Storn, J., and Tscherpel, T. (2023). Grading of Triangulations Generated by Bisection. arXiv:2305.05742.
Diening, L., Storn, J., & Tscherpel, T., 2023. Grading of Triangulations Generated by Bisection. arXiv:2305.05742.
L. Diening, J. Storn, and T. Tscherpel, “Grading of Triangulations Generated by Bisection”, arXiv:2305.05742, 2023.
Diening, L., Storn, J., Tscherpel, T.: Grading of Triangulations Generated by Bisection. arXiv:2305.05742. (2023).
Diening, Lars, Storn, Johannes, and Tscherpel, Tabea. “Grading of Triangulations Generated by Bisection”. arXiv:2305.05742 (2023).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2305.05742

Suchen in

Google Scholar