Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings

Paaßen B, Dywel M, Fleckenstein M, Pinkwart N (2022)
In: Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track. DeFalco JA, Matos DDM da C, Blanc B, Reichow I (Eds); 132–137.

Konferenzbeitrag | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Paaßen, BenjaminUniBi ; Dywel, Malwina; Fleckenstein, Melanie; Pinkwart, Niels
Herausgeber*in
DeFalco, Jeanine Antoinette; Matos, Diego Dermeval Medeiros da Cunha; Blanc, Berit; Reichow, Insa
Abstract / Bemerkung
Vocational further education typically builds upon prior knowledge. For learners who lack this prior knowledge, preparatory e-learnings may help. Therefore, we wish to identify students who would profit from such an e-learning. We consider the example of a math e-learning for the Bachelor Professional of Chemical Production and Management (CCI). To estimate whether the e-learning would help, we employ a predictive model. Developing such a model in a real-world scenario confronted us with a range of challenges, such as small sample sizes, overfitting, or implausible model parameters. We describe how we addressed these challenges such that other practitioners can learn from our case study of employing data mining in vocational training.
Stichworte
Multi-dimensional item response theory; Performance modeling; Knowledge gain; Vocational education; Further education
Erscheinungsjahr
2022
Titel des Konferenzbandes
Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track
Seite(n)
132–137
Konferenz
23rd International Conference on Artificial Intelligence in Education (AIED 2022)
Konferenzort
Durham, UK
Konferenzdatum
2022-07-27 – 2022-07-31
Page URI
https://pub.uni-bielefeld.de/record/2979002

Zitieren

Paaßen B, Dywel M, Fleckenstein M, Pinkwart N. Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings. In: DeFalco JA, Matos DDM da C, Blanc B, Reichow I, eds. Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track. 2022: 132–137.
Paaßen, B., Dywel, M., Fleckenstein, M., & Pinkwart, N. (2022). Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings. In J. A. DeFalco, D. D. M. da C. Matos, B. Blanc, & I. Reichow (Eds.), Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track (p. 132–137). https://doi.org/10.1007/978-3-031-11647-6_23
Paaßen, Benjamin, Dywel, Malwina, Fleckenstein, Melanie, and Pinkwart, Niels. 2022. “Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings”. In Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track, ed. Jeanine Antoinette DeFalco, Diego Dermeval Medeiros da Cunha Matos, Berit Blanc, and Insa Reichow, 132–137.
Paaßen, B., Dywel, M., Fleckenstein, M., and Pinkwart, N. (2022). “Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings” in Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track, DeFalco, J. A., Matos, D. D. M. da C., Blanc, B., and Reichow, I. eds. 132–137.
Paaßen, B., et al., 2022. Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings. In J. A. DeFalco, et al., eds. Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track. pp. 132–137.
B. Paaßen, et al., “Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings”, Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track, J.A. DeFalco, et al., eds., 2022, pp.132–137.
Paaßen, B., Dywel, M., Fleckenstein, M., Pinkwart, N.: Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings. In: DeFalco, J.A., Matos, D.D.M. da C., Blanc, B., and Reichow, I. (eds.) Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track. p. 132–137. (2022).
Paaßen, Benjamin, Dywel, Malwina, Fleckenstein, Melanie, and Pinkwart, Niels. “Interpretable Knowledge Gain Prediction for Vocational Preparatory E-Learnings”. Proceedings of the 23rd International Conference on Artificial Intelligence in Education (AIED 2022) Practitioner’s Track. Ed. Jeanine Antoinette DeFalco, Diego Dermeval Medeiros da Cunha Matos, Berit Blanc, and Insa Reichow. 2022. 132–137.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar