Sparse Factor Autoencoders for Item Response Theory
Paaßen B, Dywel M, Fleckenstein M, Pinkwart N (2022)
In: Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). Cristea AI, Brown C, Mitrovic T, Bosch N (Eds); 17–26.
Konferenzbeitrag | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Paaßen, BenjaminUniBi ;
Dywel, Malwina;
Fleckenstein, Melanie;
Pinkwart, Niels
Herausgeber*in
Cristea, Alexandra I.;
Brown, Chris;
Mitrovic, Tanja;
Bosch, Nigel
Einrichtung
Abstract / Bemerkung
Item response theory (IRT) is a popular method to infer student abilities and item difficulties from observed test responses. However, IRT struggles with two challenges: How to map items to skills if multiple skills are present? And how to infer the ability of new students that have not been part of the training data? Inspired by recent advances in variational autoencoders for IRT, we propose a novel method to tackle both challenges: The Sparse Factor Autoencoder (SparFAE). SparFAE maps from test responses to abilities via a linear operator and from abilities to test responses via an IRT model. All parameters of the model offer an interpretation and can be learned in an efficient manner. In experiments on synthetic and real data, we show that SparFAE is similar in accuracy to other autoencoder approaches while being faster to learn and more accurate in recovering item-skill associations.
Stichworte
item response theory;
logistic models;
variational autoencoder;
sparse factor analysis
Erscheinungsjahr
2022
Titel des Konferenzbandes
Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022)
Seite(n)
17–26
Konferenz
15th International Conference on Educational Data Mining (EDM 2022)
Konferenzort
Durham, UK
Konferenzdatum
2022-07-24 – 2022-07-27
Page URI
https://pub.uni-bielefeld.de/record/2979001
Zitieren
Paaßen B, Dywel M, Fleckenstein M, Pinkwart N. Sparse Factor Autoencoders for Item Response Theory. In: Cristea AI, Brown C, Mitrovic T, Bosch N, eds. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). 2022: 17–26.
Paaßen, B., Dywel, M., Fleckenstein, M., & Pinkwart, N. (2022). Sparse Factor Autoencoders for Item Response Theory. In A. I. Cristea, C. Brown, T. Mitrovic, & N. Bosch (Eds.), Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022) (p. 17–26). https://doi.org/10.5281/zenodo.6853067
Paaßen, Benjamin, Dywel, Malwina, Fleckenstein, Melanie, and Pinkwart, Niels. 2022. “Sparse Factor Autoencoders for Item Response Theory”. In Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), ed. Alexandra I. Cristea, Chris Brown, Tanja Mitrovic, and Nigel Bosch, 17–26.
Paaßen, B., Dywel, M., Fleckenstein, M., and Pinkwart, N. (2022). “Sparse Factor Autoencoders for Item Response Theory” in Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), Cristea, A. I., Brown, C., Mitrovic, T., and Bosch, N. eds. 17–26.
Paaßen, B., et al., 2022. Sparse Factor Autoencoders for Item Response Theory. In A. I. Cristea, et al., eds. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). pp. 17–26.
B. Paaßen, et al., “Sparse Factor Autoencoders for Item Response Theory”, Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), A.I. Cristea, et al., eds., 2022, pp.17–26.
Paaßen, B., Dywel, M., Fleckenstein, M., Pinkwart, N.: Sparse Factor Autoencoders for Item Response Theory. In: Cristea, A.I., Brown, C., Mitrovic, T., and Bosch, N. (eds.) Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). p. 17–26. (2022).
Paaßen, Benjamin, Dywel, Malwina, Fleckenstein, Melanie, and Pinkwart, Niels. “Sparse Factor Autoencoders for Item Response Theory”. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). Ed. Alexandra I. Cristea, Chris Brown, Tanja Mitrovic, and Nigel Bosch. 2022. 17–26.
Software: