Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing

Picones G, Paaßen B, Koprinska I, Yacef K (2022)
In: Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). Cristea AI, Brown C, Mitrovic T, Bosch N (Eds); 217–227.

Konferenzbeitrag | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Picones, Gio; Paaßen, BenjaminUniBi ; Koprinska, Irena; Yacef, Kalina
Herausgeber*in
Cristea, Alexandra I.; Brown, Chris; Mitrovic, Tanja; Bosch, Nigel
Abstract / Bemerkung
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a concept. We conducted an evaluation using six large datasets from a Python programming course, evaluating the performance of different domain and student modelling techniques. The results showed that it is possible to develop a successful and fully automated pipeline which learns from raw data. The best results were achieved using alternating least squares on hill-climbing Q-matrices as domain modelling and exponential moving average as student modelling. This method outperformed all baselines in terms of accuracy and showed excellent run time.
Stichworte
computer science education; domain modelling; student modelling; Q-matrix; mastery score; task-sequencing
Erscheinungsjahr
2022
Titel des Konferenzbandes
Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022)
Seite(n)
217–227
Konferenz
15th International Conference on Educational Data Mining (EDM 2022)
Konferenzort
Durham, UK
Konferenzdatum
2022-07-24 – 2022-07-27
Page URI
https://pub.uni-bielefeld.de/record/2978999

Zitieren

Picones G, Paaßen B, Koprinska I, Yacef K. Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing. In: Cristea AI, Brown C, Mitrovic T, Bosch N, eds. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). 2022: 217–227.
Picones, G., Paaßen, B., Koprinska, I., & Yacef, K. (2022). Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing. In A. I. Cristea, C. Brown, T. Mitrovic, & N. Bosch (Eds.), Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022) (p. 217–227). https://doi.org/10.5281/zenodo.6853131
Picones, Gio, Paaßen, Benjamin, Koprinska, Irena, and Yacef, Kalina. 2022. “Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing”. In Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), ed. Alexandra I. Cristea, Chris Brown, Tanja Mitrovic, and Nigel Bosch, 217–227.
Picones, G., Paaßen, B., Koprinska, I., and Yacef, K. (2022). “Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing” in Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), Cristea, A. I., Brown, C., Mitrovic, T., and Bosch, N. eds. 217–227.
Picones, G., et al., 2022. Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing. In A. I. Cristea, et al., eds. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). pp. 217–227.
G. Picones, et al., “Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing”, Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022), A.I. Cristea, et al., eds., 2022, pp.217–227.
Picones, G., Paaßen, B., Koprinska, I., Yacef, K.: Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing. In: Cristea, A.I., Brown, C., Mitrovic, T., and Bosch, N. (eds.) Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). p. 217–227. (2022).
Picones, Gio, Paaßen, Benjamin, Koprinska, Irena, and Yacef, Kalina. “Combining domain modelling and student modelling techniques in a single pipeline to support task-sequencing”. Proceedings of the 15th International Conference on Educational Data Mining (EDM 2022). Ed. Alexandra I. Cristea, Chris Brown, Tanja Mitrovic, and Nigel Bosch. 2022. 217–227.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar