Graph Edit Networks

Paaßen B, Grattarola D, Zambon D, Alippi C, Hammer B (2021)
In: Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021). Mohamed S, Hofmann K, Oh A, Murray N, Titov I (Eds); .

Konferenzbeitrag | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Paaßen, Benjamin; Grattarola, Daniele; Zambon, Daniele; Alippi, Cesare; Hammer, Barbara
Herausgeber*in
Mohamed, Shakir; Hofmann, Katja; Oh, Alice; Murray, Naila; Titov, Ivan
Abstract / Bemerkung
While graph neural networks have made impressive progress in classification and regression, few approaches to date perform time series prediction on graphs, and those that do are mostly limited to edge changes. We suggest that graph edits are a more natural interface for graph-to-graph learning. In particular, graph edits are general enough to describe any graph-to-graph change, not only edge changes; they are sparse, making them easier to understand for humans and more efficient computationally; and they are local, avoiding the need for pooling layers in graph neural networks. In this paper, we propose a novel output layer - the graph edit network - which takes node embeddings as input and generates a sequence of graph edits that transform the input graph to the output graph. We prove that a mapping between the node sets of two graphs is sufficient to construct training data for a graph edit network and that an optimal mapping yields edit scripts that are almost as short as the graph edit distance between the graphs. We further provide a proof-of-concept empirical evaluation on several graph dynamical systems, which are difficult to learn for baselines from the literature.
Stichworte
graph neural networks; graph edit distance; time series prediction; structured prediction
Erscheinungsjahr
2021
Titel des Konferenzbandes
Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021)
Konferenz
Ninth International Conference on Learning Representations (ICLR 2021)
Konferenzort
virtual
Konferenzdatum
2021-05-03 – 2021-05-07
Page URI
https://pub.uni-bielefeld.de/record/2978968

Zitieren

Paaßen B, Grattarola D, Zambon D, Alippi C, Hammer B. Graph Edit Networks. In: Mohamed S, Hofmann K, Oh A, Murray N, Titov I, eds. Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021). 2021.
Paaßen, B., Grattarola, D., Zambon, D., Alippi, C., & Hammer, B. (2021). Graph Edit Networks. In S. Mohamed, K. Hofmann, A. Oh, N. Murray, & I. Titov (Eds.), Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021)
Paaßen, Benjamin, Grattarola, Daniele, Zambon, Daniele, Alippi, Cesare, and Hammer, Barbara. 2021. “Graph Edit Networks”. In Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021), ed. Shakir Mohamed, Katja Hofmann, Alice Oh, Naila Murray, and Ivan Titov.
Paaßen, B., Grattarola, D., Zambon, D., Alippi, C., and Hammer, B. (2021). “Graph Edit Networks” in Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021), Mohamed, S., Hofmann, K., Oh, A., Murray, N., and Titov, I. eds.
Paaßen, B., et al., 2021. Graph Edit Networks. In S. Mohamed, et al., eds. Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021).
B. Paaßen, et al., “Graph Edit Networks”, Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021), S. Mohamed, et al., eds., 2021.
Paaßen, B., Grattarola, D., Zambon, D., Alippi, C., Hammer, B.: Graph Edit Networks. In: Mohamed, S., Hofmann, K., Oh, A., Murray, N., and Titov, I. (eds.) Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021). (2021).
Paaßen, Benjamin, Grattarola, Daniele, Zambon, Daniele, Alippi, Cesare, and Hammer, Barbara. “Graph Edit Networks”. Proceedings of the Ninth International Conference on Learning Representations (ICLR 2021). Ed. Shakir Mohamed, Katja Hofmann, Alice Oh, Naila Murray, and Ivan Titov. 2021.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar