Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks
Paaßen B, Bertsch A, Langer-Fischer K, Rüdian S, Wang X, Sinha R, Kuzilek J, Britsch S, Pinkwart N (2021)
In: Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021). Bouchet F, Vie J-J, Hsiao S, Sahebi S (Eds); International Educational Datamining Society.
Konferenzbeitrag | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Paaßen, BenjaminUniBi ;
Bertsch, Andreas;
Langer-Fischer, Katharina;
Rüdian, Sylvio;
Wang, Xia;
Sinha, Rupali;
Kuzilek, Jakub;
Britsch, Stefan;
Pinkwart, Niels
Herausgeber*in
Bouchet, François;
Vie, Jill-Jênn;
Hsiao, Sharon;
Sahebi, Sherry
Einrichtung
Abstract / Bemerkung
Many modern anatomy curricula teach histology using virtual microscopes, where students inspect tissue slices in a computer program (e.g. a web browser). However, the educational data mining (EDM) potential of these virtual microscopes remains under-utilized. In this paper, we use EDM techniques to investigate three research questions on a virtual microscope dataset of N = 1, 460 students. First, which factors predict the success of students locating structures in a virtual microscope? We answer this question with a generalized item response theory model (with 77% test accuracy and 0.82 test AUC in 10-fold cross-validation) and find that task difficulty is the most predictive parameter, whereas student ability is less predictive, prior success on the same task and exposure to an explanatory slide are moderately predictive, and task duration as well as prior mistakes are not predictive. Second, what are typical locations of student mistakes? And third, what are possible misconceptions explaining these locations? A clustering analysis revealed that student mistakes for a difficult task are mostly located in plausible positions (’near misses’) whereas mistakes in an easy task are more indicative of deeper misconceptions.
Stichworte
anatomy education;
clustering;
item response theory;
performance modeling;
virtual microscopes
Erscheinungsjahr
2021
Titel des Konferenzbandes
Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021)
Konferenz
15th International Conference on Educational Data Mining (EDM 2021)
Konferenzort
virtual
Konferenzdatum
2021-06-29 – 2021-07-02
Page URI
https://pub.uni-bielefeld.de/record/2978965
Zitieren
Paaßen B, Bertsch A, Langer-Fischer K, et al. Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks. In: Bouchet F, Vie J-J, Hsiao S, Sahebi S, eds. Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021). International Educational Datamining Society; 2021.
Paaßen, B., Bertsch, A., Langer-Fischer, K., Rüdian, S., Wang, X., Sinha, R., Kuzilek, J., et al. (2021). Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks. In F. Bouchet, J. - J. Vie, S. Hsiao, & S. Sahebi (Eds.), Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021) International Educational Datamining Society.
Paaßen, Benjamin, Bertsch, Andreas, Langer-Fischer, Katharina, Rüdian, Sylvio, Wang, Xia, Sinha, Rupali, Kuzilek, Jakub, Britsch, Stefan, and Pinkwart, Niels. 2021. “Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks”. In Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021), ed. François Bouchet, Jill-Jênn Vie, Sharon Hsiao, and Sherry Sahebi. International Educational Datamining Society.
Paaßen, B., Bertsch, A., Langer-Fischer, K., Rüdian, S., Wang, X., Sinha, R., Kuzilek, J., Britsch, S., and Pinkwart, N. (2021). “Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks” in Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021), Bouchet, F., Vie, J. - J., Hsiao, S., and Sahebi, S. eds. (International Educational Datamining Society).
Paaßen, B., et al., 2021. Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks. In F. Bouchet, et al., eds. Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021). International Educational Datamining Society.
B. Paaßen, et al., “Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks”, Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021), F. Bouchet, et al., eds., International Educational Datamining Society, 2021.
Paaßen, B., Bertsch, A., Langer-Fischer, K., Rüdian, S., Wang, X., Sinha, R., Kuzilek, J., Britsch, S., Pinkwart, N.: Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks. In: Bouchet, F., Vie, J.-J., Hsiao, S., and Sahebi, S. (eds.) Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021). International Educational Datamining Society (2021).
Paaßen, Benjamin, Bertsch, Andreas, Langer-Fischer, Katharina, Rüdian, Sylvio, Wang, Xia, Sinha, Rupali, Kuzilek, Jakub, Britsch, Stefan, and Pinkwart, Niels. “Analyzing Student Success and Mistakes in Virtual Microscope Structure Search Tasks”. Proceedings of the 15th {International Conference on Educational Data Mining} ({EDM} 2021). Ed. François Bouchet, Jill-Jênn Vie, Sharon Hsiao, and Sherry Sahebi. International Educational Datamining Society, 2021.
Link(s) zu Volltext(en)
Access Level
Open Access