Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning

Howard JM, Wang Q, Srivastava M, Gong T, Lee E, Abate A, Leite MS (2022)
The Journal of Physical Chemistry Letters 13(9): 2254-2263.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Howard, John M.; Wang, Qiong; Srivastava, Meghna; Gong, Tao; Lee, Erica; Abate, AntonioUniBi ; Leite, Marina S.
Abstract / Bemerkung
Metal halide perovskite (MHP) photovoltaics may become a viable alternative to standard Si-based technologies, but the current lack of long-term stability precludes their commercial adoption. Exposure to standard operational stressors (light, temperature, bias, oxygen, and water) often instigate optical and electronic dynamics, calling for a systematic investigation into MHP photophysical processes and the development of quantitative models for their prediction. We resolve the moisture-driven light emission dynamics for both methylammonium lead tribromide and triiodide thin films as a function of relative humidity (rH). With the humidity and photoluminescence time series, we train recurrent neural networks and establish their ability to quantitatively predict the path of future light emission with 18% error over 4 h. Together, our in situ rH-PL measurements and machine learning forecasting models provide a framework for the rational design of future stable perovskite devices and, thus, a faster transition toward commercial applications.
Erscheinungsjahr
2022
Zeitschriftentitel
The Journal of Physical Chemistry Letters
Band
13
Ausgabe
9
Seite(n)
2254-2263
ISSN
1948-7185
eISSN
1948-7185
Page URI
https://pub.uni-bielefeld.de/record/2978820

Zitieren

Howard JM, Wang Q, Srivastava M, et al. Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. The Journal of Physical Chemistry Letters. 2022;13(9):2254-2263.
Howard, J. M., Wang, Q., Srivastava, M., Gong, T., Lee, E., Abate, A., & Leite, M. S. (2022). Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. The Journal of Physical Chemistry Letters, 13(9), 2254-2263. https://doi.org/10.1021/acs.jpclett.2c00131
Howard, John M., Wang, Qiong, Srivastava, Meghna, Gong, Tao, Lee, Erica, Abate, Antonio, and Leite, Marina S. 2022. “Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning”. The Journal of Physical Chemistry Letters 13 (9): 2254-2263.
Howard, J. M., Wang, Q., Srivastava, M., Gong, T., Lee, E., Abate, A., and Leite, M. S. (2022). Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. The Journal of Physical Chemistry Letters 13, 2254-2263.
Howard, J.M., et al., 2022. Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. The Journal of Physical Chemistry Letters, 13(9), p 2254-2263.
J.M. Howard, et al., “Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning”, The Journal of Physical Chemistry Letters, vol. 13, 2022, pp. 2254-2263.
Howard, J.M., Wang, Q., Srivastava, M., Gong, T., Lee, E., Abate, A., Leite, M.S.: Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. The Journal of Physical Chemistry Letters. 13, 2254-2263 (2022).
Howard, John M., Wang, Qiong, Srivastava, Meghna, Gong, Tao, Lee, Erica, Abate, Antonio, and Leite, Marina S. “Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning”. The Journal of Physical Chemistry Letters 13.9 (2022): 2254-2263.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar