Rule Extraction from Compact Pareto-optimal Neural Networks
Jin Y, Sendhoff B, Körner E (2008)
In: Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Ghosh A, Dehuri S, Ghosh S (Eds); Studies in Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg: 71-90.
Sammelwerksbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jin, YaochuUniBi ;
Sendhoff, Bernhard;
Körner, Edgar
Herausgeber*in
Ghosh, Ashish;
Dehuri, Satchidananda;
Ghosh, Susmita
Abstract / Bemerkung
Rule extraction from neural networks is a powerful tool for knowledge discovery from data. In order to facilitate rule extraction, trained neural networks are often pruned so that the extracted rules are understandable to human users. This chapter presents a method for extracting interpretable rules from neural networks that are generated using an evolutionary multi-objective algorithm. In the algorithm, the accuracy on the training data and the complexity of the neural networks are minimized simultaneously. Since there is a tradeoff between accuracy and complexity, a number of Pareto-optimal neural networks, instead of one single optimal neural network, are obtained. We show that the Pareto-optimal networks with a minimal degree of complexity are often interpretable in that understandable logic rules can be extracted from them straightforwardly. The proposed approach is verified on two benchmark problems.
Erscheinungsjahr
2008
Buchtitel
Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases
Serientitel
Studies in Computational Intelligence
Seite(n)
71-90
ISBN
978-3-540-77466-2
eISBN
978-3-540-77467-9
ISSN
1860-949X
Page URI
https://pub.uni-bielefeld.de/record/2978639
Zitieren
Jin Y, Sendhoff B, Körner E. Rule Extraction from Compact Pareto-optimal Neural Networks. In: Ghosh A, Dehuri S, Ghosh S, eds. Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008: 71-90.
Jin, Y., Sendhoff, B., & Körner, E. (2008). Rule Extraction from Compact Pareto-optimal Neural Networks. In A. Ghosh, S. Dehuri, & S. Ghosh (Eds.), Studies in Computational Intelligence. Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases (pp. 71-90). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77467-9_4
Jin, Yaochu, Sendhoff, Bernhard, and Körner, Edgar. 2008. “Rule Extraction from Compact Pareto-optimal Neural Networks”. In Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, ed. Ashish Ghosh, Satchidananda Dehuri, and Susmita Ghosh, 71-90. Studies in Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg.
Jin, Y., Sendhoff, B., and Körner, E. (2008). “Rule Extraction from Compact Pareto-optimal Neural Networks” in Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, Ghosh, A., Dehuri, S., and Ghosh, S. eds. Studies in Computational Intelligence (Berlin, Heidelberg: Springer Berlin Heidelberg), 71-90.
Jin, Y., Sendhoff, B., & Körner, E., 2008. Rule Extraction from Compact Pareto-optimal Neural Networks. In A. Ghosh, S. Dehuri, & S. Ghosh, eds. Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 71-90.
Y. Jin, B. Sendhoff, and E. Körner, “Rule Extraction from Compact Pareto-optimal Neural Networks”, Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases, A. Ghosh, S. Dehuri, and S. Ghosh, eds., Studies in Computational Intelligence, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.71-90.
Jin, Y., Sendhoff, B., Körner, E.: Rule Extraction from Compact Pareto-optimal Neural Networks. In: Ghosh, A., Dehuri, S., and Ghosh, S. (eds.) Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Studies in Computational Intelligence. p. 71-90. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
Jin, Yaochu, Sendhoff, Bernhard, and Körner, Edgar. “Rule Extraction from Compact Pareto-optimal Neural Networks”. Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Ed. Ashish Ghosh, Satchidananda Dehuri, and Susmita Ghosh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. Studies in Computational Intelligence. 71-90.
Link(s) zu Volltext(en)
Access Level
Closed Access