Evolutionary multi-objective optimization of trace transform for invariant feature extraction

Albukhanajer WA, Jin Y, Briffa JA, Williams G (2012)
In: 2012 IEEE Congress on Evolutionary Computation. IEEE: 1-8.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Albukhanajer, Wissam A.; Jin, YaochuUniBi ; Briffa, Johann A.; Williams, Godfried
Abstract / Bemerkung
Trace transform is one representation of images that uses different functionals applied on the image function. When the functional is integral, it becomes identical to the well-known Radon transform, which is a useful tool in computed tomography medical imaging. The key question in Trace transform is to select the best combination of the Trace functionals to produce the optimal triple feature, which is a challenging task. In this paper, we adopt a multi-objective evolutionary algorithm adapted from the elitist non-dominated sorting genetic algorithm (NSGA-II), an evolutionary algorithm that has shown to be very efficient for multi-objective optimization, to select the best functionals as well as the optimal number of projections used in Trace transform to achieve invariant image identification. This is achieved by minimizing the within-class variance and maximizing the between-class variance. To enhance the computational efficiency, the Trace parameters are calculated offline and stored, which are then used to calculate the triple features in the evolutionary optimization. The proposed Evolutionary Trace Transform (ETT) is empirically evaluated on various images from fish database. It is shown that the proposed algorithm is very promising in that it is computationally efficient and considerably outperforms existing methods in literatures.
Erscheinungsjahr
2012
Titel des Konferenzbandes
2012 IEEE Congress on Evolutionary Computation
Seite(n)
1-8
Konferenz
2012 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Brisbane, QLD
ISBN
978-1-4673-1510-4
eISBN
978-1-4673-1509-8
Page URI
https://pub.uni-bielefeld.de/record/2978585

Zitieren

Albukhanajer WA, Jin Y, Briffa JA, Williams G. Evolutionary multi-objective optimization of trace transform for invariant feature extraction. In: 2012 IEEE Congress on Evolutionary Computation. IEEE; 2012: 1-8.
Albukhanajer, W. A., Jin, Y., Briffa, J. A., & Williams, G. (2012). Evolutionary multi-objective optimization of trace transform for invariant feature extraction. 2012 IEEE Congress on Evolutionary Computation, 1-8. IEEE. https://doi.org/10.1109/CEC.2012.6256160
Albukhanajer, Wissam A., Jin, Yaochu, Briffa, Johann A., and Williams, Godfried. 2012. “Evolutionary multi-objective optimization of trace transform for invariant feature extraction”. In 2012 IEEE Congress on Evolutionary Computation, 1-8. IEEE.
Albukhanajer, W. A., Jin, Y., Briffa, J. A., and Williams, G. (2012). “Evolutionary multi-objective optimization of trace transform for invariant feature extraction” in 2012 IEEE Congress on Evolutionary Computation (IEEE), 1-8.
Albukhanajer, W.A., et al., 2012. Evolutionary multi-objective optimization of trace transform for invariant feature extraction. In 2012 IEEE Congress on Evolutionary Computation. IEEE, pp. 1-8.
W.A. Albukhanajer, et al., “Evolutionary multi-objective optimization of trace transform for invariant feature extraction”, 2012 IEEE Congress on Evolutionary Computation, IEEE, 2012, pp.1-8.
Albukhanajer, W.A., Jin, Y., Briffa, J.A., Williams, G.: Evolutionary multi-objective optimization of trace transform for invariant feature extraction. 2012 IEEE Congress on Evolutionary Computation. p. 1-8. IEEE (2012).
Albukhanajer, Wissam A., Jin, Yaochu, Briffa, Johann A., and Williams, Godfried. “Evolutionary multi-objective optimization of trace transform for invariant feature extraction”. 2012 IEEE Congress on Evolutionary Computation. IEEE, 2012. 1-8.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche