A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction

Albukhanajer WA, Jin Y, Briffa JA, Williams G (2013)
In: Evolutionary Multi-Criterion Optimization. Purshouse RC, Fleming PJ, Fonseca CM, Greco S, Shaw J (Eds); Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg: 573-586.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Albukhanajer, Wissam A.; Jin, YaochuUniBi ; Briffa, Johann A.; Williams, Godfried
Herausgeber*in
Purshouse, Robin C.; Fleming, Peter J.; Fonseca, Carlos M.; Greco, Salvatore; Shaw, Jane
Abstract / Bemerkung
Recently, Evolutionary Trace Transform (ETT) has been developed to extract efficient features (called triple features) for invariant image identification using multi-objective evolutionary algorithms. This paper compares two methods of Evolutionary Trace Transform (method I and II) evolved through similar objectives by minimizing the within-class variance (S w ) and maximizing the between-class variance (S b ) of image features. However, each solution on the Pareto front of method I represents one triple features (i.e. 1D) to be combined with another solution to construct 2D feature space, whereas each solution on the Pareto front of method II represents a complete pair of triple features (i.e. 2D). Experimental results show that both methods are able to produce stable and consistent features. Moreover, method II has denser solutions distributed in the convex region of the Pareto front than in method I. Nevertheless, method II takes longer time to evolve than method I. Although the Trace transforms are evolved offline on one set of low resolution (64×64) images, they can be applied to extract features from various standard 256×256 images.
Erscheinungsjahr
2013
Buchtitel
Evolutionary Multi-Criterion Optimization
Serientitel
Lecture Notes in Computer Science
Seite(n)
573-586
ISBN
978-3-642-37139-4
eISBN
978-3-642-37140-0
ISSN
0302-9743
eISSN
1611-3349
Page URI
https://pub.uni-bielefeld.de/record/2978559

Zitieren

Albukhanajer WA, Jin Y, Briffa JA, Williams G. A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction. In: Purshouse RC, Fleming PJ, Fonseca CM, Greco S, Shaw J, eds. Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 573-586.
Albukhanajer, W. A., Jin, Y., Briffa, J. A., & Williams, G. (2013). A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction. In R. C. Purshouse, P. J. Fleming, C. M. Fonseca, S. Greco, & J. Shaw (Eds.), Lecture Notes in Computer Science. Evolutionary Multi-Criterion Optimization (pp. 573-586). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_43
Albukhanajer, Wissam A., Jin, Yaochu, Briffa, Johann A., and Williams, Godfried. 2013. “A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction”. In Evolutionary Multi-Criterion Optimization, ed. Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco, and Jane Shaw, 573-586. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg.
Albukhanajer, W. A., Jin, Y., Briffa, J. A., and Williams, G. (2013). “A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction” in Evolutionary Multi-Criterion Optimization, Purshouse, R. C., Fleming, P. J., Fonseca, C. M., Greco, S., and Shaw, J. eds. Lecture Notes in Computer Science (Berlin, Heidelberg: Springer Berlin Heidelberg), 573-586.
Albukhanajer, W.A., et al., 2013. A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction. In R. C. Purshouse, et al., eds. Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 573-586.
W.A. Albukhanajer, et al., “A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction”, Evolutionary Multi-Criterion Optimization, R.C. Purshouse, et al., eds., Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.573-586.
Albukhanajer, W.A., Jin, Y., Briffa, J.A., Williams, G.: A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., and Shaw, J. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. p. 573-586. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
Albukhanajer, Wissam A., Jin, Yaochu, Briffa, Johann A., and Williams, Godfried. “A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction”. Evolutionary Multi-Criterion Optimization. Ed. Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco, and Jane Shaw. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Lecture Notes in Computer Science. 573-586.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche