Neural network ensembles for image identification using Pareto-optimal features

Albukhanajer WA, Jin Y, Briffa JA (2014)
In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE: 89-96.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Albukhanajer, Wissam A.; Jin, YaochuUniBi ; Briffa, Johann A.
Abstract / Bemerkung
In this paper, an ensemble classifier is constructed for invariant image identification, where the inputs to the ensemble members are a set of Pareto-optimal image features extracted by an evolutionary multi-objective Trace transform algorithm. The Pareto-optimal feature set, called Triple features, gains various degrees of trade-off between sensitivity and invariance. Multilayer perceptron neural networks are adopted as ensemble members due to their simplicity and capability for pattern classification. The diversity of the ensemble is mainly achieved by the Pareto-optimal features extracted by the multi-objective evolutionary Trace transform. Empirical results show that the general performance of proposed ensemble classifiers is more robust to geometric deformations and noise in images compared to single neural network classifiers using one image feature.
Erscheinungsjahr
2014
Titel des Konferenzbandes
2014 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
89-96
Konferenz
2014 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Beijing, China
eISBN
978-1-4799-1488-3, 978-1-4799-6626-4
Page URI
https://pub.uni-bielefeld.de/record/2978555

Zitieren

Albukhanajer WA, Jin Y, Briffa JA. Neural network ensembles for image identification using Pareto-optimal features. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2014: 89-96.
Albukhanajer, W. A., Jin, Y., & Briffa, J. A. (2014). Neural network ensembles for image identification using Pareto-optimal features. 2014 IEEE Congress on Evolutionary Computation (CEC), 89-96. IEEE. https://doi.org/10.1109/CEC.2014.6900349
Albukhanajer, Wissam A., Jin, Yaochu, and Briffa, Johann A. 2014. “Neural network ensembles for image identification using Pareto-optimal features”. In 2014 IEEE Congress on Evolutionary Computation (CEC), 89-96. IEEE.
Albukhanajer, W. A., Jin, Y., and Briffa, J. A. (2014). “Neural network ensembles for image identification using Pareto-optimal features” in 2014 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 89-96.
Albukhanajer, W.A., Jin, Y., & Briffa, J.A., 2014. Neural network ensembles for image identification using Pareto-optimal features. In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 89-96.
W.A. Albukhanajer, Y. Jin, and J.A. Briffa, “Neural network ensembles for image identification using Pareto-optimal features”, 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014, pp.89-96.
Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Neural network ensembles for image identification using Pareto-optimal features. 2014 IEEE Congress on Evolutionary Computation (CEC). p. 89-96. IEEE (2014).
Albukhanajer, Wissam A., Jin, Yaochu, and Briffa, Johann A. “Neural network ensembles for image identification using Pareto-optimal features”. 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. 89-96.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar