Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations

Smith C, Doherty J, Jin Y (2014)
In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE: 2609-2616.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Smith, Christopher; Doherty, John; Jin, YaochuUniBi
Abstract / Bemerkung
Using a surrogate model to evaluate the expensive fitness of candidate solutions in an evolutionary algorithm can significantly reduce the overall computational cost of optimization tasks. In this paper we present a recurrent neural network ensemble that is used as a surrogate for the long-term prediction of computational fluid dynamic simulations. A hybrid multi-objective evolutionary algorithm that trains and optimizes the structure of the recurrent neural networks is introduced. Selection and combination of individual prediction models in the Pareto set of solutions is used to create the ensemble of predictors. Five selection methods are tested on six data sets and the accuracy of the ensembles is compared to the converged computational fluid dynamic data, as well as to the delta change between two flow conditions. Intermediate computational fluid dynamic data is used for training and the method presented can produce accurate and stable results using a third of the intermediate data needed for convergence.
Erscheinungsjahr
2014
Titel des Konferenzbandes
2014 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
2609-2616
Konferenz
2014 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Beijing, China
eISBN
978-1-4799-1488-3, 978-1-4799-6626-4
Page URI
https://pub.uni-bielefeld.de/record/2978554

Zitieren

Smith C, Doherty J, Jin Y. Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2014: 2609-2616.
Smith, C., Doherty, J., & Jin, Y. (2014). Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations. 2014 IEEE Congress on Evolutionary Computation (CEC), 2609-2616. IEEE. https://doi.org/10.1109/CEC.2014.6900552
Smith, Christopher, Doherty, John, and Jin, Yaochu. 2014. “Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations”. In 2014 IEEE Congress on Evolutionary Computation (CEC), 2609-2616. IEEE.
Smith, C., Doherty, J., and Jin, Y. (2014). “Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations” in 2014 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 2609-2616.
Smith, C., Doherty, J., & Jin, Y., 2014. Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations. In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 2609-2616.
C. Smith, J. Doherty, and Y. Jin, “Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations”, 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014, pp.2609-2616.
Smith, C., Doherty, J., Jin, Y.: Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations. 2014 IEEE Congress on Evolutionary Computation (CEC). p. 2609-2616. IEEE (2014).
Smith, Christopher, Doherty, John, and Jin, Yaochu. “Multi-objective evolutionary recurrent neural network ensemble for prediction of computational fluid dynamic simulations”. 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. 2609-2616.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar