Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots
Oh H, Jin Y (2014)
In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE: 776-783.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Oh, Hyondong;
Jin, YaochuUniBi
Abstract / Bemerkung
Morphogenesis, the biological developmental process of multicellular organisms, is a robust self-organising mechanism for pattern formation governed by gene regulatory networks (GRNs). Recent findings suggest that GRNs often show the use of frequently recurring patterns termed network motifs. Inspired by these biological studies, this paper proposes a morphogenetic approach to pattern formation for swarm robots to entrap targets based on an evolving hierarchical gene regulatory network (EH-GRN). The proposed EH-GRN consists of two layers: the upper layer is for adaptive pattern generation where the GRN model is evolved by basic network motifs, and the lower layer is responsible for driving robots to the target pattern generated by the upper layer. Obstacle information is introduced as one of environmental inputs along with that of targets in order to generate patterns adaptive to unknown environmental changes. Besides, splitting or merging of multiple patterns resulting from target movement is addressed by the inherent feature of the upper layer and the k-means clustering algorithm. Numerical simulations have been performed for scenarios containing static/moving targets and obstacles to validate the effectiveness and benefit of the proposed approach for complex shape generation in dynamic environments.
Erscheinungsjahr
2014
Titel des Konferenzbandes
2014 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
776-783
Konferenz
2014 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Beijing, China
eISBN
978-1-4799-1488-3,
978-1-4799-6626-4
Page URI
https://pub.uni-bielefeld.de/record/2978550
Zitieren
Oh H, Jin Y. Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2014: 776-783.
Oh, H., & Jin, Y. (2014). Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots. 2014 IEEE Congress on Evolutionary Computation (CEC), 776-783. IEEE. https://doi.org/10.1109/CEC.2014.6900365
Oh, Hyondong, and Jin, Yaochu. 2014. “Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots”. In 2014 IEEE Congress on Evolutionary Computation (CEC), 776-783. IEEE.
Oh, H., and Jin, Y. (2014). “Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots” in 2014 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 776-783.
Oh, H., & Jin, Y., 2014. Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots. In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 776-783.
H. Oh and Y. Jin, “Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots”, 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014, pp.776-783.
Oh, H., Jin, Y.: Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots. 2014 IEEE Congress on Evolutionary Computation (CEC). p. 776-783. IEEE (2014).
Oh, Hyondong, and Jin, Yaochu. “Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots”. 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. 776-783.