Trade-off between computational complexity and accuracy in evolutionary image feature extraction

Albukhanajer WA, Jin Y, Briffa JA (2015)
In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE: 2412-2419.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Albukhanajer, Wissam A.; Jin, YaochuUniBi ; Briffa, Johann A.
Abstract / Bemerkung
This paper presents evolutionary multi-objective approaches to tune parameters in Trace transform for invariant feature construction. It is well-known that the Trace transform involves three functionals applied consecutively to the image to produce real numbers called Triple features representing the input image. Traditionally, these functionals are chosen empirically, and the image sampling parameters are fixed. These parameters play important roles in the transform because they directly affect the computational complexity and robustness. In this paper, we propose tuning the Trace sampling parameters in addition to choosing the three functionals. First, by adopting two-objective evolutionary algorithms using the within-class variance and between-class variance. Second, by adopting three-objective evolutionary algorithms to consider the computational complexity as a third objective. Two different coding schemes are considered, which are integer-coding and real-coding schemes. Experimen- tal results show that integer coding scheme presents a better performance compared to the real coding scheme. Moreover, while the three-objective approach enforces a balance between robustness and computational complexity, without enforcing a minimum acceptable accuracy, features extracted tend to have a lower computational complexity at the expense of the accuracy, compared with the two-objective case.
Erscheinungsjahr
2015
Titel des Konferenzbandes
2015 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
2412-2419
Konferenz
2015 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Sendai, Japan
eISBN
978-1-4799-7492-4
Page URI
https://pub.uni-bielefeld.de/record/2978543

Zitieren

Albukhanajer WA, Jin Y, Briffa JA. Trade-off between computational complexity and accuracy in evolutionary image feature extraction. In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2015: 2412-2419.
Albukhanajer, W. A., Jin, Y., & Briffa, J. A. (2015). Trade-off between computational complexity and accuracy in evolutionary image feature extraction. 2015 IEEE Congress on Evolutionary Computation (CEC), 2412-2419. IEEE. https://doi.org/10.1109/CEC.2015.7257184
Albukhanajer, Wissam A., Jin, Yaochu, and Briffa, Johann A. 2015. “Trade-off between computational complexity and accuracy in evolutionary image feature extraction”. In 2015 IEEE Congress on Evolutionary Computation (CEC), 2412-2419. IEEE.
Albukhanajer, W. A., Jin, Y., and Briffa, J. A. (2015). “Trade-off between computational complexity and accuracy in evolutionary image feature extraction” in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 2412-2419.
Albukhanajer, W.A., Jin, Y., & Briffa, J.A., 2015. Trade-off between computational complexity and accuracy in evolutionary image feature extraction. In 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 2412-2419.
W.A. Albukhanajer, Y. Jin, and J.A. Briffa, “Trade-off between computational complexity and accuracy in evolutionary image feature extraction”, 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp.2412-2419.
Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Trade-off between computational complexity and accuracy in evolutionary image feature extraction. 2015 IEEE Congress on Evolutionary Computation (CEC). p. 2412-2419. IEEE (2015).
Albukhanajer, Wissam A., Jin, Yaochu, and Briffa, Johann A. “Trade-off between computational complexity and accuracy in evolutionary image feature extraction”. 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. 2412-2419.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar