Multi-objective ensemble generation
Gu S, Cheng R, Jin Y (2015)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5(5): 234-245.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gu, Shenkai;
Cheng, Ran;
Jin, YaochuUniBi
Alternativer Titel
Multi-objective ensemble generation
Abstract / Bemerkung
Ensemble methods that combine a committee of machine-learning models, each known as a member or base learner, have gained research interests in the past decade. One interest on ensemble generation involves the multi-objective approach, which attempts to generate both accurate and diverse members that fulfill the theoretical requirements of good ensembles. These methods resolve common difficulties of balancing the trade-off between accuracy and diversity and have been shown to be advantageous over single-objective methods. This study presents an up-to-date survey on multi-objective ensemble generation methods, including widely used diversity measures, member generation, selection, and integration techniques. Challenges and potential applications of multi-objective ensemble generation are also discussed. WIREs Data Mining Knowl Discov 2015, 5:234–245. doi: 10.1002/widm.1158
Erscheinungsjahr
2015
Zeitschriftentitel
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
Band
5
Ausgabe
5
Seite(n)
234-245
ISSN
19424787
Page URI
https://pub.uni-bielefeld.de/record/2978537
Zitieren
Gu S, Cheng R, Jin Y. Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2015;5(5):234-245.
Gu, S., Cheng, R., & Jin, Y. (2015). Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5), 234-245. https://doi.org/10.1002/widm.1158
Gu, Shenkai, Cheng, Ran, and Jin, Yaochu. 2015. “Multi-objective ensemble generation”. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5 (5): 234-245.
Gu, S., Cheng, R., and Jin, Y. (2015). Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5, 234-245.
Gu, S., Cheng, R., & Jin, Y., 2015. Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(5), p 234-245.
S. Gu, R. Cheng, and Y. Jin, “Multi-objective ensemble generation”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 5, 2015, pp. 234-245.
Gu, S., Cheng, R., Jin, Y.: Multi-objective ensemble generation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 5, 234-245 (2015).
Gu, Shenkai, Cheng, Ran, and Jin, Yaochu. “Multi-objective ensemble generation”. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5.5 (2015): 234-245.
Link(s) zu Volltext(en)
Access Level
Closed Access