Generating diverse and accurate classifier ensembles using multi-objective optimization
Gu S, Jin Y (2014)
In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE: 9-15.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gu, Shenkai;
Jin, YaochuUniBi
Abstract / Bemerkung
Accuracy and diversity are two vital requirements for constructing classifier ensembles. Previous work has achieved this by sequentially selecting accurate ensemble members while maximizing the diversity. As a result, the final diversity of the members in the ensemble will change. In addition, little work has been reported on discussing the trade-off between accuracy and diversity of classifier ensembles. This paper proposes a method for generating ensembles by explicitly maximizing classification accuracy and diversity of the ensemble together using a multi-objective evolutionary algorithm. We analyze the Pareto optimal solutions achieved by the proposed algorithm and compare them with the accuracy of single classifiers. Our results show that by explicitly maximizing diversity together with accuracy, we can find multiple classifier ensembles that outperform single classifiers. Our results also indicate that a combination of proper methods for creating and measuring diversity may be critical for generating ensembles that reliably outperform single classifiers.
Erscheinungsjahr
2014
Titel des Konferenzbandes
2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)
Seite(n)
9-15
Konferenz
2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)
Konferenzort
Orlando, FL, USA
eISBN
978-1-4799-4467-5
Page URI
https://pub.uni-bielefeld.de/record/2978533
Zitieren
Gu S, Jin Y. Generating diverse and accurate classifier ensembles using multi-objective optimization. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE; 2014: 9-15.
Gu, S., & Jin, Y. (2014). Generating diverse and accurate classifier ensembles using multi-objective optimization. 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), 9-15. IEEE. https://doi.org/10.1109/MCDM.2014.7007182
Gu, Shenkai, and Jin, Yaochu. 2014. “Generating diverse and accurate classifier ensembles using multi-objective optimization”. In 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), 9-15. IEEE.
Gu, S., and Jin, Y. (2014). “Generating diverse and accurate classifier ensembles using multi-objective optimization” in 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) (IEEE), 9-15.
Gu, S., & Jin, Y., 2014. Generating diverse and accurate classifier ensembles using multi-objective optimization. In 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE, pp. 9-15.
S. Gu and Y. Jin, “Generating diverse and accurate classifier ensembles using multi-objective optimization”, 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), IEEE, 2014, pp.9-15.
Gu, S., Jin, Y.: Generating diverse and accurate classifier ensembles using multi-objective optimization. 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). p. 9-15. IEEE (2014).
Gu, Shenkai, and Jin, Yaochu. “Generating diverse and accurate classifier ensembles using multi-objective optimization”. 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE, 2014. 9-15.