A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling
Cheng R, Jin Y, Narukawa K, Sendhoff B (2015)
IEEE Transactions on Evolutionary Computation 19(6): 838-856.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cheng, Ran;
Jin, YaochuUniBi ;
Narukawa, Kaname;
Sendhoff, Bernhard
Abstract / Bemerkung
To approximate the Pareto front, most existing multiobjective evolutionary algorithms store the nondominated solutions found so far in the population or in an external archive during the search. Such algorithms often require a high degree of diversity of the stored solutions and only a limited number of solutions can be achieved. By contrast, model-based algorithms can alleviate the requirement on solution diversity and in principle, as many solutions as needed can be generated. This paper proposes a new model-based method for representing and searching nondominated solutions. The main idea is to construct Gaussian process-based inverse models that map all found nondominated solutions from the objective space to the decision space. These inverse models are then used to create offspring by sampling the objective space. To facilitate inverse modeling, the multivariate inverse function is decomposed into a group of univariate functions, where the number of inverse models is reduced using a random grouping technique. Extensive empirical simulations demonstrate that the proposed algorithm exhibits robust search performance on a variety of medium to high dimensional multiobjective optimization test problems. Additional nondominated solutions are generated a posteriori using the constructed models to increase the density of solutions in the preferred regions at a low computational cost.
Erscheinungsjahr
2015
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
19
Ausgabe
6
Seite(n)
838-856
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978526
Zitieren
Cheng R, Jin Y, Narukawa K, Sendhoff B. A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation. 2015;19(6):838-856.
Cheng, R., Jin, Y., Narukawa, K., & Sendhoff, B. (2015). A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation, 19(6), 838-856. https://doi.org/10.1109/TEVC.2015.2395073
Cheng, Ran, Jin, Yaochu, Narukawa, Kaname, and Sendhoff, Bernhard. 2015. “A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling”. IEEE Transactions on Evolutionary Computation 19 (6): 838-856.
Cheng, R., Jin, Y., Narukawa, K., and Sendhoff, B. (2015). A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation 19, 838-856.
Cheng, R., et al., 2015. A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation, 19(6), p 838-856.
R. Cheng, et al., “A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling”, IEEE Transactions on Evolutionary Computation, vol. 19, 2015, pp. 838-856.
Cheng, R., Jin, Y., Narukawa, K., Sendhoff, B.: A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling. IEEE Transactions on Evolutionary Computation. 19, 838-856 (2015).
Cheng, Ran, Jin, Yaochu, Narukawa, Kaname, and Sendhoff, Bernhard. “A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling”. IEEE Transactions on Evolutionary Computation 19.6 (2015): 838-856.