Reference point based prediction for evolutionary dynamic multiobjective optimization

Jin Y, Yang C, Ding J, Chai T (2016)
In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE: 3769-3776.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jin, YaochuUniBi ; Yang, Cuie; Ding, Jinliang; Chai, Tianyou
Abstract / Bemerkung
Using evolutionary algorithms (EAs) to handle dynamic multiobjective optimization problems (DMOPs) is a challenging topic. In this paper, a prediction strategy based on reference points is proposed to improve the performance of EAs in solving DMOPs. The reference point based strategy is to partition the population into several subpopulations according to the reference points. When a change is detected, a sequence of the subpopulation centers in the previous environments belonging to the same reference point are used to estimate the center of in new environment. Based on the predicted centers, the EA will generate an initial population for the new environment using a combination of a Uniform distribution for enhancing population diversity and a Gaussian distributions for accelerating convergence. Experiments on ten test instances have been carried out to evaluate the performance of proposed strategy and the results show that reference point based prediction strategy exhibits superior performance in dealing with DMOPs with nonlinear correlations between decision variables and severe environmental changes.
Erscheinungsjahr
2016
Titel des Konferenzbandes
2016 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
3769-3776
Konferenz
2016 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Vancouver, BC, Canada
eISBN
978-1-5090-0623-6
Page URI
https://pub.uni-bielefeld.de/record/2978518

Zitieren

Jin Y, Yang C, Ding J, Chai T. Reference point based prediction for evolutionary dynamic multiobjective optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2016: 3769-3776.
Jin, Y., Yang, C., Ding, J., & Chai, T. (2016). Reference point based prediction for evolutionary dynamic multiobjective optimization. 2016 IEEE Congress on Evolutionary Computation (CEC), 3769-3776. IEEE. https://doi.org/10.1109/CEC.2016.7744267
Jin, Yaochu, Yang, Cuie, Ding, Jinliang, and Chai, Tianyou. 2016. “Reference point based prediction for evolutionary dynamic multiobjective optimization”. In 2016 IEEE Congress on Evolutionary Computation (CEC), 3769-3776. IEEE.
Jin, Y., Yang, C., Ding, J., and Chai, T. (2016). “Reference point based prediction for evolutionary dynamic multiobjective optimization” in 2016 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 3769-3776.
Jin, Y., et al., 2016. Reference point based prediction for evolutionary dynamic multiobjective optimization. In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 3769-3776.
Y. Jin, et al., “Reference point based prediction for evolutionary dynamic multiobjective optimization”, 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp.3769-3776.
Jin, Y., Yang, C., Ding, J., Chai, T.: Reference point based prediction for evolutionary dynamic multiobjective optimization. 2016 IEEE Congress on Evolutionary Computation (CEC). p. 3769-3776. IEEE (2016).
Jin, Yaochu, Yang, Cuie, Ding, Jinliang, and Chai, Tianyou. “Reference point based prediction for evolutionary dynamic multiobjective optimization”. 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. 3769-3776.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar