Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System

Wang H, Jin Y, Jansen JO (2016)
IEEE Transactions on Evolutionary Computation 20(6): 939-952.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wang, Handing; Jin, YaochuUniBi ; Jansen, Jan O.
Abstract / Bemerkung
Most existing work on evolutionary optimization assumes that there are analytic functions for evaluating the objectives and constraints. In the real world, however, the objective or constraint values of many optimization problems can be evaluated solely based on data and solving such optimization problems is often known as data-driven optimization. In this paper, we divide data-driven optimization problems into two categories, i.e., offline and online data-driven optimization, and discuss the main challenges involved therein. An evolutionary algorithm is then presented to optimize the design of a trauma system, which is a typical offline data-driven multiobjective optimization problem, where the objectives and constraints can be evaluated using incidents only. As each single function evaluation involves a large amount of patient data, we develop a multifidelity surrogate-management strategy to reduce the computation time of the evolutionary optimization. The main idea is to adaptively tune the approximation fidelity by clustering the original data into different numbers of clusters and a regression model is constructed to estimate the required minimum fidelity. Experimental results show that the proposed algorithm is able to save up to 90% of computation time without much sacrifice of the solution quality.
Erscheinungsjahr
2016
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
20
Ausgabe
6
Seite(n)
939-952
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978507

Zitieren

Wang H, Jin Y, Jansen JO. Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System. IEEE Transactions on Evolutionary Computation. 2016;20(6):939-952.
Wang, H., Jin, Y., & Jansen, J. O. (2016). Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System. IEEE Transactions on Evolutionary Computation, 20(6), 939-952. https://doi.org/10.1109/TEVC.2016.2555315
Wang, Handing, Jin, Yaochu, and Jansen, Jan O. 2016. “Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System”. IEEE Transactions on Evolutionary Computation 20 (6): 939-952.
Wang, H., Jin, Y., and Jansen, J. O. (2016). Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System. IEEE Transactions on Evolutionary Computation 20, 939-952.
Wang, H., Jin, Y., & Jansen, J.O., 2016. Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System. IEEE Transactions on Evolutionary Computation, 20(6), p 939-952.
H. Wang, Y. Jin, and J.O. Jansen, “Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System”, IEEE Transactions on Evolutionary Computation, vol. 20, 2016, pp. 939-952.
Wang, H., Jin, Y., Jansen, J.O.: Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System. IEEE Transactions on Evolutionary Computation. 20, 939-952 (2016).
Wang, Handing, Jin, Yaochu, and Jansen, Jan O. “Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System”. IEEE Transactions on Evolutionary Computation 20.6 (2016): 939-952.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar