A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric
Tian Y, Zhang X, Cheng R, Jin Y (2016)
In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE: 5222-5229.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye;
Zhang, Xingyi;
Cheng, Ran;
Jin, YaochuUniBi
Abstract / Bemerkung
As a pivotal component in multi-objective evolutionary algorithms (MOEAs), the environmental selection determines the quality of candidate solutions to survive at each generation. In practice, different environmental selection strategies can be based on different selection criteria, where the performance metrics (or indicators) are shown to be among the most effective ones. This paper proposes an MOEA whose environmental selection is based on an enhanced inverted generational distance metric that is able to detect noncontributing solutions (termed IGD-NS), thereby considerably accelerating the convergence of the evolutionary search. Experimental results on ZDT and DTLZ test suites demonstrate the competitive performance of the proposed MOEA/IGD-NS in comparison with some representative MOEAs.
Erscheinungsjahr
2016
Titel des Konferenzbandes
2016 IEEE Congress on Evolutionary Computation (CEC)
Seite(n)
5222-5229
Konferenz
2016 IEEE Congress on Evolutionary Computation (CEC)
Konferenzort
Vancouver, BC, Canada
eISBN
978-1-5090-0623-6
Page URI
https://pub.uni-bielefeld.de/record/2978505
Zitieren
Tian Y, Zhang X, Cheng R, Jin Y. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2016: 5222-5229.
Tian, Y., Zhang, X., Cheng, R., & Jin, Y. (2016). A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. 2016 IEEE Congress on Evolutionary Computation (CEC), 5222-5229. IEEE. https://doi.org/10.1109/CEC.2016.7748352
Tian, Ye, Zhang, Xingyi, Cheng, Ran, and Jin, Yaochu. 2016. “A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric”. In 2016 IEEE Congress on Evolutionary Computation (CEC), 5222-5229. IEEE.
Tian, Y., Zhang, X., Cheng, R., and Jin, Y. (2016). “A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric” in 2016 IEEE Congress on Evolutionary Computation (CEC) (IEEE), 5222-5229.
Tian, Y., et al., 2016. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 5222-5229.
Y. Tian, et al., “A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric”, 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp.5222-5229.
Tian, Y., Zhang, X., Cheng, R., Jin, Y.: A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. 2016 IEEE Congress on Evolutionary Computation (CEC). p. 5222-5229. IEEE (2016).
Tian, Ye, Zhang, Xingyi, Cheng, Ran, and Jin, Yaochu. “A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric”. 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. 5222-5229.