A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem
Chugh T, Chakraborti N, Sindhya K, Jin Y (2017)
Materials and Manufacturing Processes 32(10): 1172-1178.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chugh, Tinkle;
Chakraborti, Nirupam;
Sindhya, Karthik;
Jin, YaochuUniBi
Abstract / Bemerkung
A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process.
Erscheinungsjahr
2017
Zeitschriftentitel
Materials and Manufacturing Processes
Band
32
Ausgabe
10
Seite(n)
1172-1178
ISSN
1042-6914
eISSN
1532-2475
Page URI
https://pub.uni-bielefeld.de/record/2978478
Zitieren
Chugh T, Chakraborti N, Sindhya K, Jin Y. A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Materials and Manufacturing Processes. 2017;32(10):1172-1178.
Chugh, T., Chakraborti, N., Sindhya, K., & Jin, Y. (2017). A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Materials and Manufacturing Processes, 32(10), 1172-1178. https://doi.org/10.1080/10426914.2016.1269923
Chugh, Tinkle, Chakraborti, Nirupam, Sindhya, Karthik, and Jin, Yaochu. 2017. “A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem”. Materials and Manufacturing Processes 32 (10): 1172-1178.
Chugh, T., Chakraborti, N., Sindhya, K., and Jin, Y. (2017). A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Materials and Manufacturing Processes 32, 1172-1178.
Chugh, T., et al., 2017. A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Materials and Manufacturing Processes, 32(10), p 1172-1178.
T. Chugh, et al., “A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem”, Materials and Manufacturing Processes, vol. 32, 2017, pp. 1172-1178.
Chugh, T., Chakraborti, N., Sindhya, K., Jin, Y.: A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Materials and Manufacturing Processes. 32, 1172-1178 (2017).
Chugh, Tinkle, Chakraborti, Nirupam, Sindhya, Karthik, and Jin, Yaochu. “A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem”. Materials and Manufacturing Processes 32.10 (2017): 1172-1178.