Test Problems for Large-Scale Multiobjective and Many-Objective Optimization

Cheng R, Jin Y, Olhofer M, sendhoff B (2017)
IEEE Transactions on Cybernetics 47(12): 4108-4121.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cheng, Ran; Jin, YaochuUniBi ; Olhofer, Markus; sendhoff, Bernhard
Abstract / Bemerkung
The interests in multiobjective and many-objective optimization have been rapidly increasing in the evolutionary computation community. However, most studies on multiobjective and many-objective optimization are limited to small-scale problems, despite the fact that many real-world multiobjective and many-objective optimization problems may involve a large number of decision variables. As has been evident in the history of evolutionary optimization, the development of evolutionary algorithms (EAs) for solving a particular type of optimization problems has undergone a co-evolution with the development of test problems. To promote the research on large-scale multiobjective and many-objective optimization, we propose a set of generic test problems based on design principles widely used in the literature of multiobjective and many-objective optimization. In order for the test problems to be able to reflect challenges in real-world applications, we consider mixed separability between decision variables and nonuniform correlation between decision variables and objective functions. To assess the proposed test problems, six representative evolutionary multiobjective and many-objective EAs are tested on the proposed test problems. Our empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.
Erscheinungsjahr
2017
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
47
Ausgabe
12
Seite(n)
4108-4121
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978471

Zitieren

Cheng R, Jin Y, Olhofer M, sendhoff B. Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Transactions on Cybernetics. 2017;47(12):4108-4121.
Cheng, R., Jin, Y., Olhofer, M., & sendhoff, B. (2017). Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Transactions on Cybernetics, 47(12), 4108-4121. https://doi.org/10.1109/TCYB.2016.2600577
Cheng, Ran, Jin, Yaochu, Olhofer, Markus, and sendhoff, Bernhard. 2017. “Test Problems for Large-Scale Multiobjective and Many-Objective Optimization”. IEEE Transactions on Cybernetics 47 (12): 4108-4121.
Cheng, R., Jin, Y., Olhofer, M., and sendhoff, B. (2017). Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Transactions on Cybernetics 47, 4108-4121.
Cheng, R., et al., 2017. Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Transactions on Cybernetics, 47(12), p 4108-4121.
R. Cheng, et al., “Test Problems for Large-Scale Multiobjective and Many-Objective Optimization”, IEEE Transactions on Cybernetics, vol. 47, 2017, pp. 4108-4121.
Cheng, R., Jin, Y., Olhofer, M., sendhoff, B.: Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Transactions on Cybernetics. 47, 4108-4121 (2017).
Cheng, Ran, Jin, Yaochu, Olhofer, Markus, and sendhoff, Bernhard. “Test Problems for Large-Scale Multiobjective and Many-Objective Optimization”. IEEE Transactions on Cybernetics 47.12 (2017): 4108-4121.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar