Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles

Wang H, Jin Y, Sun C, Doherty J (2019)
IEEE Transactions on Evolutionary Computation 23(2): 203-216.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wang, Handing; Jin, YaochuUniBi ; Sun, Chaoli; Doherty, John
Abstract / Bemerkung
In solving many real-world optimization problems, neither mathematical functions nor numerical simulations are available for evaluating the quality of candidate solutions. Instead, surrogate models must be built based on historical data to approximate the objective functions and no new data will be available during the optimization process. Such problems are known as offline data-driven optimization problems. Since the surrogate models solely depend on the given historical data, the optimization algorithm is able to search only in a very limited decision space during offline data-driven optimization. This paper proposes a new offline data-driven evolutionary algorithm to make the full use of the offline data to guide the search. To this end, a surrogate management strategy based on ensemble learning techniques developed in machine learning is adopted, which builds a large number of surrogate models before optimization and adaptively selects a small yet diverse subset of them during the optimization to achieve the best local approximation accuracy and reduce the computational complexity. Our experimental results on the benchmark problems and a transonic airfoil design example show that the proposed algorithm is able to handle offline data-driven optimization problems with up to 100 decision variables.
Erscheinungsjahr
2019
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
23
Ausgabe
2
Seite(n)
203-216
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978463

Zitieren

Wang H, Jin Y, Sun C, Doherty J. Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Transactions on Evolutionary Computation. 2019;23(2):203-216.
Wang, H., Jin, Y., Sun, C., & Doherty, J. (2019). Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Transactions on Evolutionary Computation, 23(2), 203-216. https://doi.org/10.1109/TEVC.2018.2834881
Wang, Handing, Jin, Yaochu, Sun, Chaoli, and Doherty, John. 2019. “Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles”. IEEE Transactions on Evolutionary Computation 23 (2): 203-216.
Wang, H., Jin, Y., Sun, C., and Doherty, J. (2019). Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Transactions on Evolutionary Computation 23, 203-216.
Wang, H., et al., 2019. Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Transactions on Evolutionary Computation, 23(2), p 203-216.
H. Wang, et al., “Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles”, IEEE Transactions on Evolutionary Computation, vol. 23, 2019, pp. 203-216.
Wang, H., Jin, Y., Sun, C., Doherty, J.: Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Transactions on Evolutionary Computation. 23, 203-216 (2019).
Wang, Handing, Jin, Yaochu, Sun, Chaoli, and Doherty, John. “Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles”. IEEE Transactions on Evolutionary Computation 23.2 (2019): 203-216.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar