Data-Driven Evolutionary Optimization: An Overview and Case Studies

Jin Y, Wang H, Chugh T, Guo D, Miettinen K (2019)
IEEE Transactions on Evolutionary Computation 23(3): 442-458.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jin, YaochuUniBi ; Wang, Handing; Chugh, Tinkle; Guo, Dan; Miettinen, Kaisa
Abstract / Bemerkung
Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist. Instead, computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this paper, we provide a taxonomy of different data driven evolutionary optimization problems, discuss main challenges in data-driven evolutionary optimization with respect to the nature and amount of data, and the availability of new data during optimization. Real-world application examples are given to illustrate different model management strategies for different categories of data-driven optimization problems.
Erscheinungsjahr
2019
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
23
Ausgabe
3
Seite(n)
442-458
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978455

Zitieren

Jin Y, Wang H, Chugh T, Guo D, Miettinen K. Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Transactions on Evolutionary Computation. 2019;23(3):442-458.
Jin, Y., Wang, H., Chugh, T., Guo, D., & Miettinen, K. (2019). Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Transactions on Evolutionary Computation, 23(3), 442-458. https://doi.org/10.1109/TEVC.2018.2869001
Jin, Yaochu, Wang, Handing, Chugh, Tinkle, Guo, Dan, and Miettinen, Kaisa. 2019. “Data-Driven Evolutionary Optimization: An Overview and Case Studies”. IEEE Transactions on Evolutionary Computation 23 (3): 442-458.
Jin, Y., Wang, H., Chugh, T., Guo, D., and Miettinen, K. (2019). Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Transactions on Evolutionary Computation 23, 442-458.
Jin, Y., et al., 2019. Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Transactions on Evolutionary Computation, 23(3), p 442-458.
Y. Jin, et al., “Data-Driven Evolutionary Optimization: An Overview and Case Studies”, IEEE Transactions on Evolutionary Computation, vol. 23, 2019, pp. 442-458.
Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Transactions on Evolutionary Computation. 23, 442-458 (2019).
Jin, Yaochu, Wang, Handing, Chugh, Tinkle, Guo, Dan, and Miettinen, Kaisa. “Data-Driven Evolutionary Optimization: An Overview and Case Studies”. IEEE Transactions on Evolutionary Computation 23.3 (2019): 442-458.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar