Guest Editorial Evolutionary Many-Objective Optimization

Jin Y, Miettinen K, Ishibuchi H (2018)
IEEE Transactions on Evolutionary Computation 22(1): 1-2.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jin, YaochuUniBi ; Miettinen, Kaisa; Ishibuchi, Hisao
Abstract / Bemerkung
Over the past two decades, evolutionary algorithms have successfully been applied to single and multiobjective optimization problems having up to three objectives. Compared to traditional mathematical programming techniques, evolutionary multiobjective algorithms (MOEAs) are particularly powerful in achieving multiple nondominated solutions in a single run. However, the performance of most existing algorithms seriously degrades when the number of objectives is larger than three. Such optimization problems, often referred to as many-objective optimization problems (MaOPs) in the evolutionary computation community, are widely seen in the real-world and therefore it is of great practical importance to efficiently solve them. Challenges to evolutionary algorithms and other meta-heuristics in solving MaOPs include the inability of dominance-based MOEAs to converge to the Pareto frontier while maintaining good diversity, the prohibitively high computational complexity for MOEAs based on performance indicators, and the difficulty for human users or decision makers to clearly understand the relationship between objectives and articulate preferences. In addition, existing performance indicators for multiobjective optimization may become incapable of accurately assessing and comparing the quality of solution sets. Finally, visualization of the solutions of MaOPs also becomes a grand challenge.
Erscheinungsjahr
2018
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
22
Ausgabe
1
Seite(n)
1-2
ISSN
1089-778X, 1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978447

Zitieren

Jin Y, Miettinen K, Ishibuchi H. Guest Editorial Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation. 2018;22(1):1-2.
Jin, Y., Miettinen, K., & Ishibuchi, H. (2018). Guest Editorial Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 22(1), 1-2. https://doi.org/10.1109/TEVC.2017.2773341
Jin, Yaochu, Miettinen, Kaisa, and Ishibuchi, Hisao. 2018. “Guest Editorial Evolutionary Many-Objective Optimization”. IEEE Transactions on Evolutionary Computation 22 (1): 1-2.
Jin, Y., Miettinen, K., and Ishibuchi, H. (2018). Guest Editorial Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation 22, 1-2.
Jin, Y., Miettinen, K., & Ishibuchi, H., 2018. Guest Editorial Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 22(1), p 1-2.
Y. Jin, K. Miettinen, and H. Ishibuchi, “Guest Editorial Evolutionary Many-Objective Optimization”, IEEE Transactions on Evolutionary Computation, vol. 22, 2018, pp. 1-2.
Jin, Y., Miettinen, K., Ishibuchi, H.: Guest Editorial Evolutionary Many-Objective Optimization. IEEE Transactions on Evolutionary Computation. 22, 1-2 (2018).
Jin, Yaochu, Miettinen, Kaisa, and Ishibuchi, Hisao. “Guest Editorial Evolutionary Many-Objective Optimization”. IEEE Transactions on Evolutionary Computation 22.1 (2018): 1-2.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar