An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility

Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2018)
IEEE Transactions on Evolutionary Computation 22(4): 609-622.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye; Cheng, Ran; Zhang, Xingyi; Cheng, Fan; Jin, YaochuUniBi
Abstract / Bemerkung
During the past two decades, a variety of multiobjective evolutionary algorithms (MOEAs) have been proposed in the literature. As pointed out in some recent studies, however, the performance of an MOEA can strongly depend on the Pareto front shape of the problem to be solved, whereas most existing MOEAs show poor versatility on problems with different shapes of Pareto fronts. To address this issue, we propose an MOEA based on an enhanced inverted generational distance indicator, in which an adaptation method is suggested to adjust a set of reference points based on the indicator contributions of candidate solutions in an external archive. Our experimental results demonstrate that the proposed algorithm is versatile for solving problems with various types of Pareto fronts, outperforming several state-of-the-art evolutionary algorithms for multiobjective and many-objective optimization.
Erscheinungsjahr
2018
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
22
Ausgabe
4
Seite(n)
609-622
ISSN
1089-778X, 1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978441

Zitieren

Tian Y, Cheng R, Zhang X, Cheng F, Jin Y. An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation. 2018;22(4):609-622.
Tian, Y., Cheng, R., Zhang, X., Cheng, F., & Jin, Y. (2018). An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation, 22(4), 609-622. https://doi.org/10.1109/TEVC.2017.2749619
Tian, Ye, Cheng, Ran, Zhang, Xingyi, Cheng, Fan, and Jin, Yaochu. 2018. “An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility”. IEEE Transactions on Evolutionary Computation 22 (4): 609-622.
Tian, Y., Cheng, R., Zhang, X., Cheng, F., and Jin, Y. (2018). An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation 22, 609-622.
Tian, Y., et al., 2018. An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation, 22(4), p 609-622.
Y. Tian, et al., “An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility”, IEEE Transactions on Evolutionary Computation, vol. 22, 2018, pp. 609-622.
Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility. IEEE Transactions on Evolutionary Computation. 22, 609-622 (2018).
Tian, Ye, Cheng, Ran, Zhang, Xingyi, Cheng, Fan, and Jin, Yaochu. “An Indicator-Based Multiobjective Evolutionary Algorithm With Reference Point Adaptation for Better Versatility”. IEEE Transactions on Evolutionary Computation 22.4 (2018): 609-622.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar