An adaptive decomposition-based evolutionary algorithm for many-objective optimization

Han D, Du W, Du W, Jin Y, Wu C (2019)
Information Sciences 491: 204-222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Han, Dong; Du, Wenli; Du, Wei; Jin, YaochuUniBi ; Wu, Chunping
Abstract / Bemerkung
Penalty boundary intersection (PBI) is one popular method in decomposition based evolutionary multi-objective algorithms, where the penalty factor is crucial for striking a balance between convergence and diversity in a high-dimensional objective space. Meanwhile, the distribution of the obtained solutions highly depends on the setting of the weight vectors. This paper proposes an adaptive decomposition-based evolutionary algorithm for many-objective optimization, which introduces one adaptation mechanism for PBI-based decomposition and the other for adjusting the weight vector. The former assigns a specific penalty factor for each subproblem by using the distribution information of both population and the weight vectors, while the latter adjusts the weight vectors based on the objective ranges to handle problems with different scales on the objectives. We have compared the proposed algorithm with seven state-of-the-art many-objective evolutionary algorithms on a number of benchmark problems. The empirical results demonstrate the superiority of the proposed algorithm.
Erscheinungsjahr
2019
Zeitschriftentitel
Information Sciences
Band
491
Seite(n)
204-222
ISSN
0020-0255
Page URI
https://pub.uni-bielefeld.de/record/2978423

Zitieren

Han D, Du W, Du W, Jin Y, Wu C. An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Information Sciences. 2019;491:204-222.
Han, D., Du, W., Du, W., Jin, Y., & Wu, C. (2019). An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Information Sciences, 491, 204-222. https://doi.org/10.1016/j.ins.2019.03.062
Han, Dong, Du, Wenli, Du, Wei, Jin, Yaochu, and Wu, Chunping. 2019. “An adaptive decomposition-based evolutionary algorithm for many-objective optimization”. Information Sciences 491: 204-222.
Han, D., Du, W., Du, W., Jin, Y., and Wu, C. (2019). An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Information Sciences 491, 204-222.
Han, D., et al., 2019. An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Information Sciences, 491, p 204-222.
D. Han, et al., “An adaptive decomposition-based evolutionary algorithm for many-objective optimization”, Information Sciences, vol. 491, 2019, pp. 204-222.
Han, D., Du, W., Du, W., Jin, Y., Wu, C.: An adaptive decomposition-based evolutionary algorithm for many-objective optimization. Information Sciences. 491, 204-222 (2019).
Han, Dong, Du, Wenli, Du, Wei, Jin, Yaochu, and Wu, Chunping. “An adaptive decomposition-based evolutionary algorithm for many-objective optimization”. Information Sciences 491 (2019): 204-222.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar