Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems

Rong M, Gong D, Zhang Y, Jin Y, Pedrycz W (2019)
IEEE Transactions on Cybernetics 49(9): 3362-3374.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rong, Miao; Gong, Dunwei; Zhang, Yong; Jin, YaochuUniBi ; Pedrycz, Witold
Abstract / Bemerkung
Various real-world multiobjective optimization problems are dynamic, requiring evolutionary algorithms (EAs) to be able to rapidly track the moving Pareto front of an optimization problem once an environmental change occurs. To this end, several methods have been developed to predict the new location of the moving Pareto set (PS) so that the population can be reinitialized around the predicted location. In this paper, we present a multidirectional prediction strategy to enhance the performance of EAs in solving a dynamic multiobjective optimization problem (DMOP). To more accurately predict the moving location of the PS, the population is clustered into a number of representative groups by a proposed classification strategy, where the number of clusters is adapted according to the intensity of the environmental change. To examine the performance of the developed algorithm, the proposed prediction strategy is compared with four state-of-the-art prediction methods under the framework of particle swarm optimization as well as five popular EAs for dynamic multiobjective optimization. Our experimental results demonstrate that the proposed algorithm can effectively tackle DMOPs.
Erscheinungsjahr
2019
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
49
Ausgabe
9
Seite(n)
3362-3374
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978420

Zitieren

Rong M, Gong D, Zhang Y, Jin Y, Pedrycz W. Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on Cybernetics. 2019;49(9):3362-3374.
Rong, M., Gong, D., Zhang, Y., Jin, Y., & Pedrycz, W. (2019). Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on Cybernetics, 49(9), 3362-3374. https://doi.org/10.1109/TCYB.2018.2842158
Rong, Miao, Gong, Dunwei, Zhang, Yong, Jin, Yaochu, and Pedrycz, Witold. 2019. “Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems”. IEEE Transactions on Cybernetics 49 (9): 3362-3374.
Rong, M., Gong, D., Zhang, Y., Jin, Y., and Pedrycz, W. (2019). Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on Cybernetics 49, 3362-3374.
Rong, M., et al., 2019. Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on Cybernetics, 49(9), p 3362-3374.
M. Rong, et al., “Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems”, IEEE Transactions on Cybernetics, vol. 49, 2019, pp. 3362-3374.
Rong, M., Gong, D., Zhang, Y., Jin, Y., Pedrycz, W.: Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems. IEEE Transactions on Cybernetics. 49, 3362-3374 (2019).
Rong, Miao, Gong, Dunwei, Zhang, Yong, Jin, Yaochu, and Pedrycz, Witold. “Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems”. IEEE Transactions on Cybernetics 49.9 (2019): 3362-3374.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar