A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems

Wang H, Jin Y (2020)
IEEE Transactions on Cybernetics 50(2): 536-549.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wang, Handing; Jin, YaochuUniBi
Abstract / Bemerkung
Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.
Erscheinungsjahr
2020
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
50
Ausgabe
2
Seite(n)
536-549
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978409

Zitieren

Wang H, Jin Y. A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems. IEEE Transactions on Cybernetics. 2020;50(2):536-549.
Wang, H., & Jin, Y. (2020). A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems. IEEE Transactions on Cybernetics, 50(2), 536-549. https://doi.org/10.1109/TCYB.2018.2869674
Wang, Handing, and Jin, Yaochu. 2020. “A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems”. IEEE Transactions on Cybernetics 50 (2): 536-549.
Wang, H., and Jin, Y. (2020). A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems. IEEE Transactions on Cybernetics 50, 536-549.
Wang, H., & Jin, Y., 2020. A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems. IEEE Transactions on Cybernetics, 50(2), p 536-549.
H. Wang and Y. Jin, “A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems”, IEEE Transactions on Cybernetics, vol. 50, 2020, pp. 536-549.
Wang, H., Jin, Y.: A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems. IEEE Transactions on Cybernetics. 50, 536-549 (2020).
Wang, Handing, and Jin, Yaochu. “A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems”. IEEE Transactions on Cybernetics 50.2 (2020): 536-549.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar