Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling
Tian Y, Zhang X, Cheng R, He C, Jin Y (2020)
IEEE Transactions on Cybernetics 50(3): 1106-1119.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye;
Zhang, Xingyi;
Cheng, Ran;
He, Cheng;
Jin, YaochuUniBi
Abstract / Bemerkung
In evolutionary multiobjective optimization, the Pareto front (PF) is approximated by using a set of representative candidate solutions with good convergence and diversity. However, most existing multiobjective evolutionary algorithms (MOEAs) have general difficulty in the approximation of PFs with complicated geometries. To address this issue, we propose a generic front modeling method for evolutionary multiobjective optimization, where the shape of the nondominated front is estimated by training a generalized simplex model. On the basis of the estimated front, we further develop an MOEA, where both the mating selection and environmental selection are driven by the approximate nondominated fronts modeled during the optimization process. For performance assessment, the proposed algorithm is compared with several state-of-the-art evolutionary algorithms on a wide range of benchmark problems with various types of PFs and different numbers of objectives. Experimental results demonstrate that the proposed algorithm performs consistently on a variety of multiobjective optimization problems.
Erscheinungsjahr
2020
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
50
Ausgabe
3
Seite(n)
1106-1119
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978407
Zitieren
Tian Y, Zhang X, Cheng R, He C, Jin Y. Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. IEEE Transactions on Cybernetics. 2020;50(3):1106-1119.
Tian, Y., Zhang, X., Cheng, R., He, C., & Jin, Y. (2020). Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. IEEE Transactions on Cybernetics, 50(3), 1106-1119. https://doi.org/10.1109/TCYB.2018.2883914
Tian, Ye, Zhang, Xingyi, Cheng, Ran, He, Cheng, and Jin, Yaochu. 2020. “Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling”. IEEE Transactions on Cybernetics 50 (3): 1106-1119.
Tian, Y., Zhang, X., Cheng, R., He, C., and Jin, Y. (2020). Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. IEEE Transactions on Cybernetics 50, 1106-1119.
Tian, Y., et al., 2020. Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. IEEE Transactions on Cybernetics, 50(3), p 1106-1119.
Y. Tian, et al., “Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling”, IEEE Transactions on Cybernetics, vol. 50, 2020, pp. 1106-1119.
Tian, Y., Zhang, X., Cheng, R., He, C., Jin, Y.: Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. IEEE Transactions on Cybernetics. 50, 1106-1119 (2020).
Tian, Ye, Zhang, Xingyi, Cheng, Ran, He, Cheng, and Jin, Yaochu. “Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling”. IEEE Transactions on Cybernetics 50.3 (2020): 1106-1119.