Federated learning on non-IID data: A survey
Zhu H, Xu J, Liu S, Jin Y (2021)
Neurocomputing 465: 371-390.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zhu, Hangyu;
Xu, Jinjin;
Liu, Shiqing;
Jin, YaochuUniBi
Abstract / Bemerkung
Federated learning is an emerging distributed machine learning framework for privacy preservation. However, models trained in federated learning usually have worse performance than those trained in the standard centralized learning mode, especially when the training data are not independent and identically distributed (Non-IID) on the local devices. In this survey, we provide a detailed analysis of the influence of Non-IID data on both parametric and non-parametric machine learning models in both horizontal and vertical federated learning. In addition, current research work on handling challenges of Non-IID data in federated learning are reviewed, and both advantages and disadvantages of these approaches are discussed. Finally, we suggest several future research directions before concluding the paper.
Erscheinungsjahr
2021
Zeitschriftentitel
Neurocomputing
Band
465
Seite(n)
371-390
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2978386
Zitieren
Zhu H, Xu J, Liu S, Jin Y. Federated learning on non-IID data: A survey. Neurocomputing. 2021;465:371-390.
Zhu, H., Xu, J., Liu, S., & Jin, Y. (2021). Federated learning on non-IID data: A survey. Neurocomputing, 465, 371-390. https://doi.org/10.1016/j.neucom.2021.07.098
Zhu, Hangyu, Xu, Jinjin, Liu, Shiqing, and Jin, Yaochu. 2021. “Federated learning on non-IID data: A survey”. Neurocomputing 465: 371-390.
Zhu, H., Xu, J., Liu, S., and Jin, Y. (2021). Federated learning on non-IID data: A survey. Neurocomputing 465, 371-390.
Zhu, H., et al., 2021. Federated learning on non-IID data: A survey. Neurocomputing, 465, p 371-390.
H. Zhu, et al., “Federated learning on non-IID data: A survey”, Neurocomputing, vol. 465, 2021, pp. 371-390.
Zhu, H., Xu, J., Liu, S., Jin, Y.: Federated learning on non-IID data: A survey. Neurocomputing. 465, 371-390 (2021).
Zhu, Hangyu, Xu, Jinjin, Liu, Shiqing, and Jin, Yaochu. “Federated learning on non-IID data: A survey”. Neurocomputing 465 (2021): 371-390.