Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios

Wang H, Feng L, Jin Y, Doherty J (2021)
IEEE Computational Intelligence Magazine 16(1): 34-48.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wang, Handing; Feng, Liang; Jin, YaochuUniBi ; Doherty, John
Abstract / Bemerkung
Minimax optimization is a widely-used formulation for robust design in multiple operating or environmental scenarios, where the worst-case performance among multiple scenarios is the optimization objective requiring a large number of quality assessments. Consequently, minimax optimization using evolutionary algorithms becomes prohibitive when each quality assessment involves computationally expensive numerical simulations or costly physical experiments. This work employs evolutionary multitasking optimization and surrogate techniques to address the challenges of the high-dimensional search space and high computation cost of minimax optimization. To this end, finding the worst-case scenario for different candidate solutions is considered as the optimization of multiple problems that can be solved simultaneously using the evolutionary multitasking optimization approach. In order to further speed up the proposed algorithm, a surrogate model in the joint space of the decision and scenario spaces is built to replace part of the expensive function evaluations. A generation-based model management strategy using a statistical hypothesis test is designed to manage the surrogate model. Experimental results on both benchmark problems and an airfoil design application indicate that the proposed algorithm can find satisfactory solutions with a very limited computational budget.
Erscheinungsjahr
2021
Zeitschriftentitel
IEEE Computational Intelligence Magazine
Band
16
Ausgabe
1
Seite(n)
34-48
ISSN
1556-603X
eISSN
1556-6048
Page URI
https://pub.uni-bielefeld.de/record/2978378

Zitieren

Wang H, Feng L, Jin Y, Doherty J. Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios. IEEE Computational Intelligence Magazine. 2021;16(1):34-48.
Wang, H., Feng, L., Jin, Y., & Doherty, J. (2021). Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios. IEEE Computational Intelligence Magazine, 16(1), 34-48. https://doi.org/10.1109/MCI.2020.3039067
Wang, Handing, Feng, Liang, Jin, Yaochu, and Doherty, John. 2021. “Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios”. IEEE Computational Intelligence Magazine 16 (1): 34-48.
Wang, H., Feng, L., Jin, Y., and Doherty, J. (2021). Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios. IEEE Computational Intelligence Magazine 16, 34-48.
Wang, H., et al., 2021. Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios. IEEE Computational Intelligence Magazine, 16(1), p 34-48.
H. Wang, et al., “Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios”, IEEE Computational Intelligence Magazine, vol. 16, 2021, pp. 34-48.
Wang, H., Feng, L., Jin, Y., Doherty, J.: Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios. IEEE Computational Intelligence Magazine. 16, 34-48 (2021).
Wang, Handing, Feng, Liang, Jin, Yaochu, and Doherty, John. “Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios”. IEEE Computational Intelligence Magazine 16.1 (2021): 34-48.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar