A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships

Yu G, Jin Y, Olhofer M (2021)
IEEE Transactions on Evolutionary Computation 25(1): 145-158.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Yu, Guo; Jin, YaochuUniBi ; Olhofer, Markus
Abstract / Bemerkung
In preference-based optimization, knee points are considered the naturally preferred tradeoff solutions, especially when the decision maker has little a priori knowledge about the problem to be solved. However, identifying all convex knee regions of a Pareto front remains extremely challenging, in particular in a high-dimensional objective space. This article presents a new evolutionary multiobjective algorithm for locating knee regions using two localized dominance relationships. In the environmental selection, the α-dominance is applied to each subpopulation partitioned by a set of predefined reference vectors, thereby guiding the search toward different potential knee regions while removing possible dominance resistant solutions. A knee-oriented-dominance measure making use of the extreme points is then proposed to detect knee solutions in convex knee regions and discard solutions in concave knee regions. Our experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art knee identification algorithms on a majority of multiobjective optimization test problems having up to eight objectives and a hybrid electric vehicle controller design problem with seven objectives.
Erscheinungsjahr
2021
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
25
Ausgabe
1
Seite(n)
145-158
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978375

Zitieren

Yu G, Jin Y, Olhofer M. A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE Transactions on Evolutionary Computation. 2021;25(1):145-158.
Yu, G., Jin, Y., & Olhofer, M. (2021). A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE Transactions on Evolutionary Computation, 25(1), 145-158. https://doi.org/10.1109/TEVC.2020.3008877
Yu, Guo, Jin, Yaochu, and Olhofer, Markus. 2021. “A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships”. IEEE Transactions on Evolutionary Computation 25 (1): 145-158.
Yu, G., Jin, Y., and Olhofer, M. (2021). A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE Transactions on Evolutionary Computation 25, 145-158.
Yu, G., Jin, Y., & Olhofer, M., 2021. A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE Transactions on Evolutionary Computation, 25(1), p 145-158.
G. Yu, Y. Jin, and M. Olhofer, “A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships”, IEEE Transactions on Evolutionary Computation, vol. 25, 2021, pp. 145-158.
Yu, G., Jin, Y., Olhofer, M.: A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships. IEEE Transactions on Evolutionary Computation. 25, 145-158 (2021).
Yu, Guo, Jin, Yaochu, and Olhofer, Markus. “A Multiobjective Evolutionary Algorithm for Finding Knee Regions Using Two Localized Dominance Relationships”. IEEE Transactions on Evolutionary Computation 25.1 (2021): 145-158.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar