Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

He C, Huang S, Cheng R, Tan KC, Jin Y (2021)
IEEE Transactions on Cybernetics 51(6): 3129-3142.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
He, Cheng; Huang, Shihua; Cheng, Ran; Tan, Kay Chen; Jin, YaochuUniBi
Abstract / Bemerkung
Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
Erscheinungsjahr
2021
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
51
Ausgabe
6
Seite(n)
3129-3142
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978368

Zitieren

He C, Huang S, Cheng R, Tan KC, Jin Y. Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). IEEE Transactions on Cybernetics. 2021;51(6):3129-3142.
He, C., Huang, S., Cheng, R., Tan, K. C., & Jin, Y. (2021). Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). IEEE Transactions on Cybernetics, 51(6), 3129-3142. https://doi.org/10.1109/TCYB.2020.2985081
He, Cheng, Huang, Shihua, Cheng, Ran, Tan, Kay Chen, and Jin, Yaochu. 2021. “Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)”. IEEE Transactions on Cybernetics 51 (6): 3129-3142.
He, C., Huang, S., Cheng, R., Tan, K. C., and Jin, Y. (2021). Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). IEEE Transactions on Cybernetics 51, 3129-3142.
He, C., et al., 2021. Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). IEEE Transactions on Cybernetics, 51(6), p 3129-3142.
C. He, et al., “Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)”, IEEE Transactions on Cybernetics, vol. 51, 2021, pp. 3129-3142.
He, C., Huang, S., Cheng, R., Tan, K.C., Jin, Y.: Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs). IEEE Transactions on Cybernetics. 51, 3129-3142 (2021).
He, Cheng, Huang, Shihua, Cheng, Ran, Tan, Kay Chen, and Jin, Yaochu. “Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)”. IEEE Transactions on Cybernetics 51.6 (2021): 3129-3142.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar