A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems

Tian Y, Liu R, Zhang X, Ma H, Tan KC, Jin Y (2021)
IEEE Transactions on Evolutionary Computation 25(3): 405-418.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye; Liu, Ruchen; Zhang, Xingyi; Ma, Haiping; Tan, Kay Chen; Jin, YaochuUniBi
Abstract / Bemerkung
Multimodal multiobjective optimization problems (MMOPs) widely exist in real-world applications, which have multiple equivalent Pareto-optimal solutions that are similar in the objective space but totally different in the decision space. While some evolutionary algorithms (EAs) have been developed to find the equivalent Pareto-optimal solutions in recent years, they are ineffective to handle large-scale MMOPs having a large number of variables. This article thus proposes an EA for solving large-scale MMOPs with sparse Pareto-optimal solutions, i.e., most variables in the optimal solutions are 0. The proposed algorithm explores different regions of the decision space via multiple subpopulations and guides the search behavior of the subpopulations via adaptively updated guiding vectors. The guiding vector for each subpopulation not only provides efficient convergence in the huge search space but also differentiates its search direction from others to handle the multimodality. While most existing EAs solve MMOPs with 2-7 decision variables, the proposed algorithm is shown to be effective for benchmark MMOPs with up to 500 decision variables. Moreover, the proposed algorithm also produces a better result than state-of-the-art methods for the neural architecture search.
Erscheinungsjahr
2021
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
25
Ausgabe
3
Seite(n)
405-418
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978367

Zitieren

Tian Y, Liu R, Zhang X, Ma H, Tan KC, Jin Y. A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation. 2021;25(3):405-418.
Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K. C., & Jin, Y. (2021). A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation, 25(3), 405-418. https://doi.org/10.1109/TEVC.2020.3044711
Tian, Ye, Liu, Ruchen, Zhang, Xingyi, Ma, Haiping, Tan, Kay Chen, and Jin, Yaochu. 2021. “A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems”. IEEE Transactions on Evolutionary Computation 25 (3): 405-418.
Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K. C., and Jin, Y. (2021). A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation 25, 405-418.
Tian, Y., et al., 2021. A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation, 25(3), p 405-418.
Y. Tian, et al., “A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems”, IEEE Transactions on Evolutionary Computation, vol. 25, 2021, pp. 405-418.
Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K.C., Jin, Y.: A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation. 25, 405-418 (2021).
Tian, Ye, Liu, Ruchen, Zhang, Xingyi, Ma, Haiping, Tan, Kay Chen, and Jin, Yaochu. “A Multipopulation Evolutionary Algorithm for Solving Large-Scale Multimodal Multiobjective Optimization Problems”. IEEE Transactions on Evolutionary Computation 25.3 (2021): 405-418.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar