Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis

He C, Cheng R, Li L, Tan KC, Jin Y (2022)
IEEE Transactions on Evolutionary Computation: 1-1.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
He, Cheng; Cheng, Ran; Li, Lianghao; Tan, Kay Chen; Jin, YaochuUniBi
Abstract / Bemerkung
With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD.
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Seite(n)
1-1
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978353

Zitieren

He C, Cheng R, Li L, Tan KC, Jin Y. Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis. IEEE Transactions on Evolutionary Computation. 2022:1-1.
He, C., Cheng, R., Li, L., Tan, K. C., & Jin, Y. (2022). Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis. IEEE Transactions on Evolutionary Computation, 1-1. https://doi.org/10.1109/TEVC.2022.3213006
He, Cheng, Cheng, Ran, Li, Lianghao, Tan, Kay Chen, and Jin, Yaochu. 2022. “Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis”. IEEE Transactions on Evolutionary Computation, 1-1.
He, C., Cheng, R., Li, L., Tan, K. C., and Jin, Y. (2022). Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis. IEEE Transactions on Evolutionary Computation, 1-1.
He, C., et al., 2022. Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis. IEEE Transactions on Evolutionary Computation, , p 1-1.
C. He, et al., “Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis”, IEEE Transactions on Evolutionary Computation, 2022, pp. 1-1.
He, C., Cheng, R., Li, L., Tan, K.C., Jin, Y.: Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis. IEEE Transactions on Evolutionary Computation. 1-1 (2022).
He, Cheng, Cheng, Ran, Li, Lianghao, Tan, Kay Chen, and Jin, Yaochu. “Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis”. IEEE Transactions on Evolutionary Computation (2022): 1-1.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar