A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization
Qi S, Zou J, Yang S, Jin Y, Zheng J, Yang X (2022)
Information Sciences 609: 1601-1620.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Qi, Sheng;
Zou, Juan;
Yang, Shengxiang;
Jin, YaochuUniBi ;
Zheng, Jinhua;
Yang, Xu
Abstract / Bemerkung
With the popularity of “flipped classrooms,” teachers pay more attention to cultivating students’ autonomous learning ability while imparting knowledge. Inspired by this, this paper proposes a Self-exploratory Competitive Swarm Optimization algorithm for Large-scale Multiobjective Optimization (SECSO). Its idea is very simple and there are no parameters that need to be adjusted. Particles evolve by exploring their neighboring space and learning from other particles in the swarm, thereby simultaneously enhancing the diversity and convergence performance of the algorithm. Compared with eight state-of-the-art large-scale multiobjective evolutionary algorithms, the proposed method exhibited outstanding performance on LSMOP problems with up to 10,000 decision variables. Unlike most existing large-scale evolutionary algorithms that usually require a large number of objective evaluations, SECSO shows the ability to find a set of well converged and diverse non-dominated solutions.
Erscheinungsjahr
2022
Zeitschriftentitel
Information Sciences
Band
609
Seite(n)
1601-1620
ISSN
0020-0255
Page URI
https://pub.uni-bielefeld.de/record/2978347
Zitieren
Qi S, Zou J, Yang S, Jin Y, Zheng J, Yang X. A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization. Information Sciences. 2022;609:1601-1620.
Qi, S., Zou, J., Yang, S., Jin, Y., Zheng, J., & Yang, X. (2022). A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization. Information Sciences, 609, 1601-1620. https://doi.org/10.1016/j.ins.2022.07.110
Qi, Sheng, Zou, Juan, Yang, Shengxiang, Jin, Yaochu, Zheng, Jinhua, and Yang, Xu. 2022. “A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization”. Information Sciences 609: 1601-1620.
Qi, S., Zou, J., Yang, S., Jin, Y., Zheng, J., and Yang, X. (2022). A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization. Information Sciences 609, 1601-1620.
Qi, S., et al., 2022. A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization. Information Sciences, 609, p 1601-1620.
S. Qi, et al., “A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization”, Information Sciences, vol. 609, 2022, pp. 1601-1620.
Qi, S., Zou, J., Yang, S., Jin, Y., Zheng, J., Yang, X.: A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization. Information Sciences. 609, 1601-1620 (2022).
Qi, Sheng, Zou, Juan, Yang, Shengxiang, Jin, Yaochu, Zheng, Jinhua, and Yang, Xu. “A self-exploratory competitive swarm optimization algorithm for large-scale multiobjective optimization”. Information Sciences 609 (2022): 1601-1620.
Link(s) zu Volltext(en)
Access Level
Closed Access