A Decomposition Method for Both Additively and Non-additively Separable Problems

Chen M, Du W, Tang Y, Jin Y, Yen GG (2022)
IEEE Transactions on Evolutionary Computation: 1-1.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chen, Minyang; Du, Wei; Tang, Yang; Jin, YaochuUniBi ; Yen, Gary G.
Abstract / Bemerkung
Problem decomposition is crucial for coping with large-scale global optimization problems, which relies heavily on highly precise variable grouping methods. The state-of-the-art decomposition methods identify separability based on the finite differences principle, which is valid only for additively separable functions but not applicable to non-additively separable functions. Therefore, we need to investigate separability in more depth in order to propose a more general principle and design more universal decomposition methods. In this paper, we conduct a comprehensive theoretical investigation on separability, the core of which is proposing an innovative separability identification principle: the minimum points shift principle. By utilizing the new principle, we develop a general separability grouping (GSG) method that can handle both additively and non-additively separable functions with high accuracy. In addition, we design a new set of benchmark functions based on non-additive separability, which compensates for the lack of non-additively separable functions in the previous test suites. Extensive experiments demonstrate that the proposed GSG achieves high grouping accuracy on both new and CEC series benchmark problems, especially on non-additively separable problems Finally, we verify that the proposed GSG can effectively improve the optimization performance of non-additively separable problems through optimization experiments.
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Seite(n)
1-1
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2978346

Zitieren

Chen M, Du W, Tang Y, Jin Y, Yen GG. A Decomposition Method for Both Additively and Non-additively Separable Problems. IEEE Transactions on Evolutionary Computation. 2022:1-1.
Chen, M., Du, W., Tang, Y., Jin, Y., & Yen, G. G. (2022). A Decomposition Method for Both Additively and Non-additively Separable Problems. IEEE Transactions on Evolutionary Computation, 1-1. https://doi.org/10.1109/TEVC.2022.3218375
Chen, Minyang, Du, Wei, Tang, Yang, Jin, Yaochu, and Yen, Gary G. 2022. “A Decomposition Method for Both Additively and Non-additively Separable Problems”. IEEE Transactions on Evolutionary Computation, 1-1.
Chen, M., Du, W., Tang, Y., Jin, Y., and Yen, G. G. (2022). A Decomposition Method for Both Additively and Non-additively Separable Problems. IEEE Transactions on Evolutionary Computation, 1-1.
Chen, M., et al., 2022. A Decomposition Method for Both Additively and Non-additively Separable Problems. IEEE Transactions on Evolutionary Computation, , p 1-1.
M. Chen, et al., “A Decomposition Method for Both Additively and Non-additively Separable Problems”, IEEE Transactions on Evolutionary Computation, 2022, pp. 1-1.
Chen, M., Du, W., Tang, Y., Jin, Y., Yen, G.G.: A Decomposition Method for Both Additively and Non-additively Separable Problems. IEEE Transactions on Evolutionary Computation. 1-1 (2022).
Chen, Minyang, Du, Wei, Tang, Yang, Jin, Yaochu, and Yen, Gary G. “A Decomposition Method for Both Additively and Non-additively Separable Problems”. IEEE Transactions on Evolutionary Computation (2022): 1-1.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar