A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems
Xiang X, Tian Y, Zhang X, Xiao J, Jin Y (2022)
IEEE Transactions on Intelligent Transportation Systems 23(6): 5275-5286.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Xiang, Xiaoshu;
Tian, Ye;
Zhang, Xingyi;
Xiao, Jianhua;
Jin, YaochuUniBi
Abstract / Bemerkung
Dynamic vehicle routing problems (DVRPs) have become a hot research topic due to their significance in logistics, although it is still very challenging for existing algorithms to solve DVRPs due to the dynamically changing customer requests during the optimization. In this paper, we propose a pairwise proximity learning-based ant colony algorithm, termed PPL-ACO, for tackling DVRPs. In PPL-ACO, a pairwise proximity learning method is suggested to predict the local visiting order of customers in the optimal route after the occurrence of changes, which is on the basis of learning from the optimal routes found before the changes occur. A radial basis function network is used to learn the local visiting order of customers based on the proximity between each pair of customer nodes, by which the optimal routes can be quickly tracked after changes occur. Experimental results on 22 popular DVRP instances show that the proposed PPL-ACO significantly outperforms four state-of-the-art approaches to DVRPs. More interestingly, the results on five large-scale DVRP instances demonstrate the superiority of the proposed PPL-ACO in solving large-scale DVPRs with up to 1000 customers. The results on a real case of Nankai Strict, Tianjin, China also verifies that the proposed PPL-ACO is more effective and efficient than the four compared approaches in solving real-world DVRPs.
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Intelligent Transportation Systems
Band
23
Ausgabe
6
Seite(n)
5275-5286
ISSN
1524-9050
eISSN
1558-0016
Page URI
https://pub.uni-bielefeld.de/record/2978339
Zitieren
Xiang X, Tian Y, Zhang X, Xiao J, Jin Y. A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems. IEEE Transactions on Intelligent Transportation Systems. 2022;23(6):5275-5286.
Xiang, X., Tian, Y., Zhang, X., Xiao, J., & Jin, Y. (2022). A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5275-5286. https://doi.org/10.1109/TITS.2021.3052834
Xiang, Xiaoshu, Tian, Ye, Zhang, Xingyi, Xiao, Jianhua, and Jin, Yaochu. 2022. “A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems”. IEEE Transactions on Intelligent Transportation Systems 23 (6): 5275-5286.
Xiang, X., Tian, Y., Zhang, X., Xiao, J., and Jin, Y. (2022). A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems. IEEE Transactions on Intelligent Transportation Systems 23, 5275-5286.
Xiang, X., et al., 2022. A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems. IEEE Transactions on Intelligent Transportation Systems, 23(6), p 5275-5286.
X. Xiang, et al., “A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems”, IEEE Transactions on Intelligent Transportation Systems, vol. 23, 2022, pp. 5275-5286.
Xiang, X., Tian, Y., Zhang, X., Xiao, J., Jin, Y.: A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems. IEEE Transactions on Intelligent Transportation Systems. 23, 5275-5286 (2022).
Xiang, Xiaoshu, Tian, Ye, Zhang, Xingyi, Xiao, Jianhua, and Jin, Yaochu. “A Pairwise Proximity Learning-Based Ant Colony Algorithm for Dynamic Vehicle Routing Problems”. IEEE Transactions on Intelligent Transportation Systems 23.6 (2022): 5275-5286.