A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems
Tian Y, Lu C, Zhang X, Cheng F, Jin Y (2022)
IEEE Transactions on Cybernetics 52(7): 6784-6797.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye;
Lu, Chang;
Zhang, Xingyi;
Cheng, Fan;
Jin, YaochuUniBi
Abstract / Bemerkung
In real-world applications, there exist a lot of multiobjective optimization problems whose Pareto-optimal solutions are sparse, that is, most variables of these solutions are 0. Generally, many sparse multiobjective optimization problems (SMOPs) contain a large number of variables, which pose grand challenges for evolutionary algorithms to find the optimal solutions efficiently. To address the curse of dimensionality, this article proposes an evolutionary algorithm for solving large-scale SMOPs, which aims to mine the sparse distribution of the Pareto-optimal solutions and, thus, considerably reduces the search space. More specifically, the proposed algorithm suggests an evolutionary pattern mining approach to detect the maximum and minimum candidate sets of the nonzero variables in the Pareto-optimal solutions, and uses them to limit the dimensions in generating offspring solutions. For further performance enhancement, a binary crossover operator and a binary mutation operator are designed to ensure the sparsity of solutions. According to the results on eight benchmark problems and four real-world problems, the proposed algorithm is superior over existing evolutionary algorithms in solving large-scale SMOPs.
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
52
Ausgabe
7
Seite(n)
6784-6797
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978337
Zitieren
Tian Y, Lu C, Zhang X, Cheng F, Jin Y. A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Transactions on Cybernetics. 2022;52(7):6784-6797.
Tian, Y., Lu, C., Zhang, X., Cheng, F., & Jin, Y. (2022). A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Transactions on Cybernetics, 52(7), 6784-6797. https://doi.org/10.1109/TCYB.2020.3041325
Tian, Ye, Lu, Chang, Zhang, Xingyi, Cheng, Fan, and Jin, Yaochu. 2022. “A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems”. IEEE Transactions on Cybernetics 52 (7): 6784-6797.
Tian, Y., Lu, C., Zhang, X., Cheng, F., and Jin, Y. (2022). A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Transactions on Cybernetics 52, 6784-6797.
Tian, Y., et al., 2022. A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Transactions on Cybernetics, 52(7), p 6784-6797.
Y. Tian, et al., “A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems”, IEEE Transactions on Cybernetics, vol. 52, 2022, pp. 6784-6797.
Tian, Y., Lu, C., Zhang, X., Cheng, F., Jin, Y.: A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems. IEEE Transactions on Cybernetics. 52, 6784-6797 (2022).
Tian, Ye, Lu, Chang, Zhang, Xingyi, Cheng, Fan, and Jin, Yaochu. “A Pattern Mining-Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems”. IEEE Transactions on Cybernetics 52.7 (2022): 6784-6797.