Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization
Tian Y, Zhang Y, Su Y, Zhang X, Tan KC, Jin Y (2022)
IEEE Transactions on Cybernetics 52(9): 9559-9572.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye;
Zhang, Yajie;
Su, Yansen;
Zhang, Xingyi;
Tan, Kay Chen;
Jin, YaochuUniBi
Abstract / Bemerkung
Both objective optimization and constraint satisfaction are crucial for solving constrained multiobjective optimization problems, but the existing evolutionary algorithms encounter difficulties in striking a good balance between them when tackling complex feasible regions. To address this issue, this article proposes a two-stage evolutionary algorithm, which adjusts the fitness evaluation strategies during the evolutionary process to adaptively balance objective optimization and constraint satisfaction. The proposed algorithm can switch between the two stages according to the status of the current population, enabling the population to cross the infeasible region and reach the feasible regions in one stage, and to spread along the feasible boundaries in the other stage. Experimental studies on four benchmark suites and three real-world applications demonstrate the superiority of the proposed algorithm over the state-of-the-art algorithms, especially on problems with complex feasible regions.
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Cybernetics
Band
52
Ausgabe
9
Seite(n)
9559-9572
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2978336
Zitieren
Tian Y, Zhang Y, Su Y, Zhang X, Tan KC, Jin Y. Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics. 2022;52(9):9559-9572.
Tian, Y., Zhang, Y., Su, Y., Zhang, X., Tan, K. C., & Jin, Y. (2022). Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics, 52(9), 9559-9572. https://doi.org/10.1109/TCYB.2020.3021138
Tian, Ye, Zhang, Yajie, Su, Yansen, Zhang, Xingyi, Tan, Kay Chen, and Jin, Yaochu. 2022. “Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization”. IEEE Transactions on Cybernetics 52 (9): 9559-9572.
Tian, Y., Zhang, Y., Su, Y., Zhang, X., Tan, K. C., and Jin, Y. (2022). Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics 52, 9559-9572.
Tian, Y., et al., 2022. Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics, 52(9), p 9559-9572.
Y. Tian, et al., “Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization”, IEEE Transactions on Cybernetics, vol. 52, 2022, pp. 9559-9572.
Tian, Y., Zhang, Y., Su, Y., Zhang, X., Tan, K.C., Jin, Y.: Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization. IEEE Transactions on Cybernetics. 52, 9559-9572 (2022).
Tian, Ye, Zhang, Yajie, Su, Yansen, Zhang, Xingyi, Tan, Kay Chen, and Jin, Yaochu. “Balancing Objective Optimization and Constraint Satisfaction in Constrained Evolutionary Multiobjective Optimization”. IEEE Transactions on Cybernetics 52.9 (2022): 9559-9572.