Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images
Lei T, Geng X, Ning H, Lv Z, Gong M, Jin Y, Nandi AK (2023)
IEEE Transactions on Geoscience and Remote Sensing 61: 1-14.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Lei, Tao;
Geng, Xinzhe;
Ning, Hailong;
Lv, Zhiyong;
Gong, Maoguo;
Jin, YaochuUniBi ;
Nandi, Asoke K.
Abstract / Bemerkung
Deep convolutional neural networks (CNNs) have achieved much success in remote sensing image change detection (CD) but still suffer from two main problems. First, the existing multiscale feature fusion methods often use redundant feature extraction and fusion strategies, which often lead to high computational costs and memory usage. Second, the regular attention mechanism in CD is difficult to model spatial–spectral features and generate 3-D attention weights at the same time, ignoring the cooperation between spatial features and spectral features. To address the above issues, an efficient ultralightweight spatial–spectral feature cooperation network (USSFC-Net) is proposed for CD in this article. The proposed USSFC-Net has two main advantages. First, a multiscale decoupled convolution (MSDConv) is designed, which is clearly different from the popular atrous spatial pyramid pooling (ASPP) module and its variants since it can flexibly capture the multiscale features of changed objects using cyclic multiscale convolution. Meanwhile, the design of MSDConv can greatly reduce the number of parameters and computational redundancy. Second, an efficient spatial–spectral feature cooperation (SSFC) strategy is introduced to obtain richer features. The SSFC differs from the existing 2-D attention mechanisms since it learns 3-D spatial–spectral attention weights without adding any parameters. The experiments on three datasets for remote sensing image CD demonstrate that the proposed USSFC-Net achieves better CD accuracy than most CNNs-based methods and requires lower computational costs and fewer parameters, even it is superior to some Transformer-based methods. The code is available at https://github.com/SUST-reynole/USSFC-Net.
Erscheinungsjahr
2023
Zeitschriftentitel
IEEE Transactions on Geoscience and Remote Sensing
Band
61
Seite(n)
1-14
Urheberrecht / Lizenzen
ISSN
0196-2892
eISSN
1558-0644
Page URI
https://pub.uni-bielefeld.de/record/2978328
Zitieren
Lei T, Geng X, Ning H, et al. Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing. 2023;61:1-14.
Lei, T., Geng, X., Ning, H., Lv, Z., Gong, M., Jin, Y., & Nandi, A. K. (2023). Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-14. https://doi.org/10.1109/TGRS.2023.3261273
Lei, Tao, Geng, Xinzhe, Ning, Hailong, Lv, Zhiyong, Gong, Maoguo, Jin, Yaochu, and Nandi, Asoke K. 2023. “Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images”. IEEE Transactions on Geoscience and Remote Sensing 61: 1-14.
Lei, T., Geng, X., Ning, H., Lv, Z., Gong, M., Jin, Y., and Nandi, A. K. (2023). Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing 61, 1-14.
Lei, T., et al., 2023. Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 61, p 1-14.
T. Lei, et al., “Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images”, IEEE Transactions on Geoscience and Remote Sensing, vol. 61, 2023, pp. 1-14.
Lei, T., Geng, X., Ning, H., Lv, Z., Gong, M., Jin, Y., Nandi, A.K.: Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing. 61, 1-14 (2023).
Lei, Tao, Geng, Xinzhe, Ning, Hailong, Lv, Zhiyong, Gong, Maoguo, Jin, Yaochu, and Nandi, Asoke K. “Ultralightweight Spatial–Spectral Feature Cooperation Network for Change Detection in Remote Sensing Images”. IEEE Transactions on Geoscience and Remote Sensing 61 (2023): 1-14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2023-04-26T15:00:18Z
MD5 Prüfsumme
ab2177af25e6eff88b2c854afcfca5ee
Link(s) zu Volltext(en)
Access Level
Open Access
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in