Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow

Banas L, Ondrejat M (2023)
Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) 57(2): 785-815.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Banas, LubomirUniBi; Ondrejat, Martin
Abstract / Bemerkung
We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges in law to a solution that is defined in the sense of stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show to holds even in probability. As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of image denoising.
Stichworte
stochastic total variation flow; stochastic variational inequalities; image processing; finite element approximation; tightness in BV spaces
Erscheinungsjahr
2023
Zeitschriftentitel
Mathematical Modelling and Numerical Analysis (ESAIM: M2AN)
Band
57
Ausgabe
2
Seite(n)
785-815
ISSN
2822-7840
eISSN
2804-7214
Page URI
https://pub.uni-bielefeld.de/record/2978300

Zitieren

Banas L, Ondrejat M. Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) . 2023;57(2):785-815.
Banas, L., & Ondrejat, M. (2023). Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) , 57(2), 785-815. https://doi.org/10.1051/m2an/2022089
Banas, Lubomir, and Ondrejat, Martin. 2023. “Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow”. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) 57 (2): 785-815.
Banas, L., and Ondrejat, M. (2023). Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) 57, 785-815.
Banas, L., & Ondrejat, M., 2023. Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) , 57(2), p 785-815.
L. Banas and M. Ondrejat, “Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow”, Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) , vol. 57, 2023, pp. 785-815.
Banas, L., Ondrejat, M.: Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) . 57, 785-815 (2023).
Banas, Lubomir, and Ondrejat, Martin. “Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow”. Mathematical Modelling and Numerical Analysis (ESAIM: M2AN) 57.2 (2023): 785-815.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar