Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond

Vishnevskiy Y, Otlyotov AA, Lamm J-H, Stammler H-G, Girichev GV, Mitzel NW (2023)
Physical Chemistry Chemical Physics.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The molecular structure of acenaphthene has been determined experimentally in the gas phase using gas electron diffraction intensities and literature-available rotational constants. Supplementary high-level quantum-chemical calculations were utilized in refinements of the semi-empirical equilibrium structure. In this work we investigate on how different schemes of GED data averaging and weighting can be used for obtaining the most accurate and precise structural parameters. Single-crystal X-ray diffraction experiments at different temperatures have been performed and the solid-state structure of acenaphthene has been determined. Both gas and solid-state acenaphthene molecules are planar and possess a non-twisted ethylene bridge. The aliphatic C–C bond in the ethylene fragment is elongated to 1.560(4) Å in the gas phase and 1.5640(4) Å in the solid phase. Based on the experimental data several theoretical approximations have been calibrated and predictions for other molecules were made, taking into account dispersion and electrostatic interactions. Particular derivatives of acenaphthene may potentially have significantly elongated C–C bonds up to 1.725 Å. However, among the experimental gas-phase structures available to date probably the longest C–C bond (re,(av)= 1.750(28) Å atw= 0.93) was determined in a carbaborane derivative 1,2-(SeH)2-closo-1,2-C2B10H10.
Erscheinungsjahr
2023
Zeitschriftentitel
Physical Chemistry Chemical Physics
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2978115

Zitieren

Vishnevskiy Y, Otlyotov AA, Lamm J-H, Stammler H-G, Girichev GV, Mitzel NW. Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond. Physical Chemistry Chemical Physics. 2023.
Vishnevskiy, Y., Otlyotov, A. A., Lamm, J. - H., Stammler, H. - G., Girichev, G. V., & Mitzel, N. W. (2023). Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D2CP05613E
Vishnevskiy, Yury, Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Stammler, Hans-Georg, Girichev, Georgiy V., and Mitzel, Norbert W. 2023. “Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond”. Physical Chemistry Chemical Physics.
Vishnevskiy, Y., Otlyotov, A. A., Lamm, J. - H., Stammler, H. - G., Girichev, G. V., and Mitzel, N. W. (2023). Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond. Physical Chemistry Chemical Physics.
Vishnevskiy, Y., et al., 2023. Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond. Physical Chemistry Chemical Physics.
Y. Vishnevskiy, et al., “Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond”, Physical Chemistry Chemical Physics, 2023.
Vishnevskiy, Y., Otlyotov, A.A., Lamm, J.-H., Stammler, H.-G., Girichev, G.V., Mitzel, N.W.: Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond. Physical Chemistry Chemical Physics. (2023).
Vishnevskiy, Yury, Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Stammler, Hans-Georg, Girichev, Georgiy V., and Mitzel, Norbert W. “Accurate single crystal and gas-phase molecular structures of acenaphthene: a starting point in the search for the longest C–C bond”. Physical Chemistry Chemical Physics (2023).

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 37038753
PubMed | Europe PMC

Suchen in

Google Scholar