Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness
Hofmanová M, Zhu R, Zhu X (2023)
Annals of Probability 51(2): 524-579.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hofmanová, MartinaUniBi;
Zhu, Rongchan;
Zhu, Xiangchan
Einrichtung
Abstract / Bemerkung
We are concerned with the three-dimensional incompressible Navier- Stokes equations driven by an additive stochastic forcing of trace class. First, for every divergence free initial condition in L2 we establish existence of infinitely many global-in-time probabilistically strong and analytically weak solutions, solving one of the open problems in the field. This result, in partic-ular, implies nonuniqueness in law. Second, we prove nonuniqueness of the associated Markov processes in a suitably chosen class of analytically weak solutions satisfying a relaxed form of an energy inequality. Translated to the deterministic setting, we obtain nonuniqueness of the associated semiflows.
Stichworte
Stochastic Navier– Stokes equations;
probabilistically strong;
solutions;
Markov selec-tion;
nonuniqueness in law;
convex integration
Erscheinungsjahr
2023
Zeitschriftentitel
Annals of Probability
Band
51
Ausgabe
2
Seite(n)
524-579
ISSN
0091-1798
Page URI
https://pub.uni-bielefeld.de/record/2978101
Zitieren
Hofmanová M, Zhu R, Zhu X. Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness. Annals of Probability. 2023;51(2):524-579.
Hofmanová, M., Zhu, R., & Zhu, X. (2023). Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness. Annals of Probability, 51(2), 524-579. https://doi.org/10.1214/22-AOP1607
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. 2023. “Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness”. Annals of Probability 51 (2): 524-579.
Hofmanová, M., Zhu, R., and Zhu, X. (2023). Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness. Annals of Probability 51, 524-579.
Hofmanová, M., Zhu, R., & Zhu, X., 2023. Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness. Annals of Probability, 51(2), p 524-579.
M. Hofmanová, R. Zhu, and X. Zhu, “Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness”, Annals of Probability, vol. 51, 2023, pp. 524-579.
Hofmanová, M., Zhu, R., Zhu, X.: Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness. Annals of Probability. 51, 524-579 (2023).
Hofmanová, Martina, Zhu, Rongchan, and Zhu, Xiangchan. “Global-in-time probabilistically strong and Markov solutions to stochastic 3D Navier–Stokes equations: Existence and nonuniqueness”. Annals of Probability 51.2 (2023): 524-579.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in