A tensor product approach to non-local differential complexes

Kommer J (2023)
Bielefeld: Universität Bielefeld.

Bielefelder E-Dissertation | Englisch
 
Download
OA 800.21 KB
Gutachter*in / Betreuer*in
Abstract / Bemerkung
We define and study differential complexes of Alexander-Spanier type on metric measure spaces associated with (generally) unbounded non-local operators, such as operators of fractional Laplacian type. We show that these complexes can be used to approximate complexes of differential forms in a non-local-to-local convergence on the level of cores. Under an absolute continuity condition, we construct Hilbert complexes, observe invariance properties, and obtain associated self-adjoint Hodge Laplacians. For the case of _d_-regular measures and operators of fractional Laplacian type, we provide results on removable sets in terms of Hausdorff measures. We prove a Mayer-Vietoris principle and a Poincaré lemma, and show that, in the compact Riemannian manifold case, the de Rham cohomology is recovered.
Jahr
2023
Seite(n)
104
Page URI
https://pub.uni-bielefeld.de/record/2977924

Zitieren

Kommer J. A tensor product approach to non-local differential complexes. Bielefeld: Universität Bielefeld; 2023.
Kommer, J. (2023). A tensor product approach to non-local differential complexes. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2977924
Kommer, Jörn. 2023. A tensor product approach to non-local differential complexes. Bielefeld: Universität Bielefeld.
Kommer, J. (2023). A tensor product approach to non-local differential complexes. Bielefeld: Universität Bielefeld.
Kommer, J., 2023. A tensor product approach to non-local differential complexes, Bielefeld: Universität Bielefeld.
J. Kommer, A tensor product approach to non-local differential complexes, Bielefeld: Universität Bielefeld, 2023.
Kommer, J.: A tensor product approach to non-local differential complexes. Universität Bielefeld, Bielefeld (2023).
Kommer, Jörn. A tensor product approach to non-local differential complexes. Bielefeld: Universität Bielefeld, 2023.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-03-30T16:53:57Z
MD5 Prüfsumme
93856eba8ebc89a2aca302b6dc702d5c


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar