Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis

Dawid H, Harting P, Neugart M (2023) Universität Bielefeld Working Papers in Economics and Management; 02-2023.
Bielefeld: Bielefeld University, Department of Business Administration and Economics.

Diskussionspapier | Veröffentlicht | Englisch
 
Download
OA 672.79 KB
Autor*in
Abstract / Bemerkung
We study how the use of machine-learning based algorithms for the determination of wage offers affects workers’ wages on online labor platforms. Firms use reinforcement-learning to update posted wages on the platform, and heterogeneous workers send applications based on the posted information. We show that if firms use a deep Q-network (DQN), as an example of a state-of-the-art machine learning algorithm, the emerging wages closely resemble the equilibrium outcome. However, slightly changing the setup of the algorithms can lead to substantial collusion and wages well below the equilibrium level. In particular, we identify a specific property of the algorithms, namely whether experience replay is used, which determines whether collusion occurs or not. Our findings are robust with respect to many features of the model, including the design of the online labor platform.
Stichworte
online digital labor platforms; duopsony; deep Q-network; experience replay; wages
Erscheinungsjahr
2023
Serientitel
Universität Bielefeld Working Papers in Economics and Management
Band
02-2023
Seite(n)
20
ISBN
2196−2723
Page URI
https://pub.uni-bielefeld.de/record/2977919

Zitieren

Dawid H, Harting P, Neugart M. Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis. Universität Bielefeld Working Papers in Economics and Management. Vol 02-2023. Bielefeld: Bielefeld University, Department of Business Administration and Economics; 2023.
Dawid, H., Harting, P., & Neugart, M. (2023). Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis (Universität Bielefeld Working Papers in Economics and Management, 02-2023). Bielefeld: Bielefeld University, Department of Business Administration and Economics. https://doi.org/10.4119/unibi/2977919
Dawid, Herbert, Harting, Philipp, and Neugart, Michael. 2023. Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis. Vol. 02-2023. Universität Bielefeld Working Papers in Economics and Management. Bielefeld: Bielefeld University, Department of Business Administration and Economics.
Dawid, H., Harting, P., and Neugart, M. (2023). Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis. Universität Bielefeld Working Papers in Economics and Management, 02-2023, Bielefeld: Bielefeld University, Department of Business Administration and Economics.
Dawid, H., Harting, P., & Neugart, M., 2023. Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis, Universität Bielefeld Working Papers in Economics and Management, no.02-2023, Bielefeld: Bielefeld University, Department of Business Administration and Economics.
H. Dawid, P. Harting, and M. Neugart, Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis, Universität Bielefeld Working Papers in Economics and Management, vol. 02-2023, Bielefeld: Bielefeld University, Department of Business Administration and Economics, 2023.
Dawid, H., Harting, P., Neugart, M.: Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis. Universität Bielefeld Working Papers in Economics and Management, 02-2023. Bielefeld University, Department of Business Administration and Economics, Bielefeld (2023).
Dawid, Herbert, Harting, Philipp, and Neugart, Michael. Implications of algorithmic wage setting on online labor platforms: a simulation-based analysis. Bielefeld: Bielefeld University, Department of Business Administration and Economics, 2023. Universität Bielefeld Working Papers in Economics and Management. 02-2023.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-03-30T15:49:44Z
MD5 Prüfsumme
e5e6300d667da4037849ef5bca09bfed


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche